Skip to main content
Log in

Recent Studies Related to Microwave Processing of Fluid Foods

  • Review Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Microwave heating is a convenient way to heat materials; it is considered to be a fast, clean, and easy to use technology. The use of microwaves for industrial food unit operations is the subject of research since several years ago. However, the application of microwaves depends, among other variables, on the dielectric properties of the material to be heated; otherwise, the efficiency of the process and the quality of the final product cannot be guaranteed. This paper reviews basic concepts related to microwaves and dielectric properties, and then it presents reported dielectric properties data for selected fluid foods and microwave-heating processes that have been recently studied. These processes are focused mainly on microbial inactivation, enzyme inactivation, chemical, physical, or sensory changes evaluation, or for reheating. The temperature uniformity is also discussed as a key issue for successful application of microwave heating, which is now applied by some companies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad, S. S., Morgan, M. T., & Okos, M. R. (2001). Effects of microwave on the drying, checking and mechanical strength of baked biscuits. Journal of Food Engineering, 50(2), 63–75.

    Article  Google Scholar 

  • Ahmed, J., & Ramaswamy, H. S. (2007). Microwave pasteurization and sterilization of foods. In M. S. Rahman (Ed.), Handbook of food preservation (2nd ed., pp. 691–712). Boca Ratón FL: CRC Press.

    Chapter  Google Scholar 

  • Alibas, I. (2007). Microwave, air and combined microwave—air-drying parameters of pumpkin slices. LWT-Food Science and Technology, 40(8), 1445–1451.

    Article  CAS  Google Scholar 

  • Alibas Ozkan, I., Akbudak, B., & Akbudak, N. (2007). Microwave drying characteristics of spinach. Journal of Food Engineering, 78(2), 577–583.

    Article  Google Scholar 

  • Basaran, P., & Akhan, U. (2010). Microwave irradiation of hazelnuts for the control of aflatoxin producing Aspergillus parasiticus. Innovative Food Science & Emerging Technologies, 11(1), 113–117.

    Article  CAS  Google Scholar 

  • Bento, L., Rein, P., Sabliov, C., Boldor, D., & Coronel, P. (2006). C Massecuite re-heating using microwaves. Journal of the American Society of Sugar Cane Technologists, 26, 1–13.

    Google Scholar 

  • Bondaruk, J., Markowski, M., & Błaszczak, W. (2007). Effect of drying conditions on the quality of vacuum-microwave dried potato cubes. Journal of Food Engineering, 81(2), 306–312.

    Article  Google Scholar 

  • Brinley, T. A., Dock, C. N., Truong, V. D., Coronel, P., Kumar, P., Simunovic, J., et al. (2007). Feasibility of utilizing bioindicators for testing microbial inactivation in sweet potato purees processed with a continuous-flow microwave system. Journal of Food Science, 72(5), 235–242.

    Article  CAS  Google Scholar 

  • Brinley, T. A., Truong, V. D., Coronel, P., Simunovic, J., & Sandeep, K. P. (2008). Dielectric properties of sweet potato purees at 915 MHz as affected by temperature and chemical composition. International Journal of Food properties, 11, 158–172.

    Article  CAS  Google Scholar 

  • Buffler, C. R. (1993). Microwave Cooking and Processing. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Burfoot, D., Raiton, C. J., Foster, A. M., & Reavell, S. R. (1996). Modelling the pasteurization of prepared meals with microwaves at 896 MHz. Journal of Food Engineering, 30(1–2), 117–133.

    Article  Google Scholar 

  • Campañone, L. A., Paola, C. A. & Mascheroni, R. H. (2011). Modeling and simulation of microwave heating of foods under different process schedules. Food and Bioprocess Technology, doi:10.1007/s11947-010-0378-5, in press.

  • Cañumir, J. A., Celis, J. E., De Bruijn, J., & Vidal, L. V. (2002). Pasteurisation of apple juice by using microwaves. Lebensmittel-Wissenschaft und-Technologie, 35(5), 389–392.

    Article  CAS  Google Scholar 

  • Cha-um, W., Rattanadecho, P., & Pakdee, W. (2011). Experimental and numerical analysis of microwave heating of water and oil using a rectangular wave guide: Influence of sample sizes, positions, and microwave power. Food and Bioprocess Technology, 4, 544–558.

    Article  Google Scholar 

  • Cinquanta, L., Albanese, D., Cuccurullo, G., & Di Matteo, M. (2010). Effect on orange juice of batch pasteurization in an improved pilot-scale microwave oven. Journal of Food Science., 75(1), E46–E50.

    Article  CAS  Google Scholar 

  • Clare, D. A., Bang, W. S., Cartwright, M. A., Drake, P., Coronel, P., & Simunovic, J. (2005). Comparison of sensory, microbiological and biochemical parameters of microwave versus indirect UHT fluid skim milk during storage. Journal of Dairy Science, 88, 4172–4182.

    Article  CAS  Google Scholar 

  • Coronel, P., Simunovic, J., & Sandeep, K. P. (2003). Temperature profiles within milk after heating in a continuous-flow tubular microwave system operating at 915 MHz. Journal of Food Science, 68(6), 1976–1981.

    Article  CAS  Google Scholar 

  • Coronel, P., Truong, V. D., Simunovic, J., Sandeep, K. P., & Cartwright, G. D. (2005). Aseptic processing of sweet potato purees using a continuous flow microwave system. Journal of Food Science, 70(9), 531–536.

    Article  Google Scholar 

  • Coronel, P., Simunovic, J., Sandeep, K. P., & Kumar, P. (2008a). Dielectric properties of pumpable food materials at 915 MHz. International Journal of Food Properties, 11, 508–518.

    Article  Google Scholar 

  • Coronel, P., Simunovic, J., Sandeep, K. P., Cartwright, G. D., & Kumar, P. (2008b). Sterilization solutions for aseptic processing using a continuous flow microwave system. Journal of Food Engineering, 85, 528–536.

    Article  Google Scholar 

  • Cui, Z., Xu, S., & Sun, D. (2004). Microwave-vacuum drying kinetics of carrot slices. Journal of Food Engineering, 65(2), 157–164.

    Article  Google Scholar 

  • Cui, Z., Sun, L., Chen, W., & Sun, D. (2008). Preparation of dry honey by microwave-vacuum drying. Journal of Food Engineering, 84(4), 582–590.

    Article  Google Scholar 

  • Datta, A. K. (2003). Microwave food preservation. In D. R. Heldman (Ed.), Encyclopedia of Agricultural, Food, and Biological Engineering (pp. 657–661). New York: Marcel Dekker.

    Google Scholar 

  • Datta, A., Prosetya, H., & Hu, W. (1992). Mathematical modeling of batch heating of liquids in a microwave cavity. Journal of Microwave Power and Electromagnetic Energy, 27, 38–48.

    Google Scholar 

  • Datta, A. K., Summu, G., & Raghavan, G. S. V. (2005). Dielectric properties of foods. In M. A. Rao, S. S. H. Rizvi, & A. K. Datta (Eds.), Engineering properties of foods (3 th ed., pp. 501–566). Boca Ratón: CRC Press.

    Google Scholar 

  • Decareau, R. V. (1992). Microwave foods: new product development. Trumbull CN: Food and Nutrition.

    Google Scholar 

  • Dorantes-Alvarez, L., Barbosa-Cánovas, G., & Gutiérrez-López, G. (2000). Blanching of fruits and vegetables using microwaves. In G. V. Barbosa-Cánovas & G. W. Gould (Eds.), Innovations in food processing (pp. 149–162). Boca Ratón: CRC Press.

    Google Scholar 

  • Drouzas, A. E., & Shubert, H. (1996). Microwave application in vacuum drying of fruits. Journal of Food Engineering, 28, 203–209.

    Article  Google Scholar 

  • Duan, X., Zhang, M., Mujumdar, A. S., & Wang, S. (2010). Microwave freeze drying of sea cucumber (Stichopus japonicus). Journal of Food Engineering, 96(4), 491–497.

    Article  Google Scholar 

  • Duan, Z., Jiang, L., Wang, J., Yu, X., Wang, T. (2011). Drying and quality characteristics of tilapia fish fillets dried with hot-air microwave heating. Food and Bioproducts Processing, doi:10.1016/j.fbp.2010.11.005, in press.

  • Erle, U., & Shubert, H. (2001). Combined osmotic and microwave-vacuum dehydration of apples and strawberries. Journal of Food Engineering, 49(2–3), 193–199.

    Article  Google Scholar 

  • Figiel, A. (2009). Drying kinetics and quality of vacuum-microwave dehydrated garlic cloves and slices. Journal of Food Engineering, 94(1), 98–104.

    Article  Google Scholar 

  • Fu, Y. C. (2004). Fundamentals and industrial applications of microwave and radio frequency in food processing. In J. S. Smith & Y. H. Hui (Eds.), Food processing: principles and applications (pp. 79–100). Iowa: Blackwell.

    Chapter  Google Scholar 

  • Geedipalli, S. S. R., Rakesh, V., & Datta, A. K. (2007). Modeling the heating uniformity contributed by a rotating turntable in microwave ovens. Journal of Food Engineering, 82, 359–368.

    Article  Google Scholar 

  • Gentry, T. S., & Roberts, J. S. (2005). Design and evaluation of a continuous flow microwave pasteurization system for apple cider. LWT-Food Science and Technology, 38(3), 227–238.

    Article  CAS  Google Scholar 

  • Gerbo, N. M., Boldor, D., & Sabliov, C. M. (2008). Design of a measurement system for temperature distribution in continuous-flow microwave heating of pumpable fluids using infrared imaging and fiber optic technology. Journal of Microwave Power and Electromagnetic Energy, 42(1), 55–65.

    Google Scholar 

  • Giuliani, R., Bevilacqua, A., & Rosaria, M. C. (2010). Use of microwave processing to reduce the initial contamination by Alicyclobacillus acidoreterrestris in a cream of asparagus and effect of the treatment on the lipid fraction. Innovative Food Science and Emerging Technologies, 11(2), 328–334.

    Article  CAS  Google Scholar 

  • Gowen, A. A., Abu-Ghannam, N., Frias, J., & Oliveira, J. (2008). Modeling dehydration and rehydration of cooked soybeans subjected to combined microwave–hot-air drying. Innovative Food Science & Emerging Technologies, 9(1), 129–137.

    Article  CAS  Google Scholar 

  • Guzman-Gerónimo, R. I., López, M. G., & Dorantes-Alvarez, L. (2008). Microwave processing of avocado: Volatile flavor profiling and olfactometry. Innovative Food Science and Emerging Technologies, 9, 501–506.

    Article  CAS  Google Scholar 

  • Hossan, M. R., Byun, D., & Dutta, P. (2010). Analysis of microwave heating for cylindrical shaped objects. International Journal of Heat and Mass Transfer, 53, 5129–5138.

    Article  Google Scholar 

  • Huang, Y., Sheng, J., Yang, F., & Hu, Q. (2007). Effect of enzyme inactivation by microwave and oven heating on preservation quality of green tea. Journal of Food Engineering, 78, 687–692.

    Article  CAS  Google Scholar 

  • Içıer, F., & Baysal, T. (2004). Dielectric properties of food materials-2: Measurement techniques. Critical Reviews in Food Science and Nutrition, 44, 473–478.

    Article  CAS  Google Scholar 

  • Igual, M., García-Martínez, E., Camacho, M. M., & Martínez-Navarrete, N. (2010). Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chemistry, 118, 291–299.

    Article  CAS  Google Scholar 

  • Ikediala, J. N., Tang, J., Drake, S. R., & Neven, L. G. (2000). Dielectric properties of apple cultivars and codling moth larvae. Transactions of the ASAE, 43(5), 1175–1184.

    Google Scholar 

  • James, C., Barlow, K. E., James, S. J., & Swain, M. J. (2006). The influence of processing and product factors on the quality of microwave pre-cooked bacon. Journal of Food Engineering, 77(4), 835–843.

    Article  Google Scholar 

  • Jeong, J. Y., Lee, E. S., Choi, J. H., Lee, J. Y., Kim, J. M., Min, S. G., et al. (2007). Variability in temperature distribution and cooking properties of ground pork patties containing different fat level and with/without salt cooked by microwave energy. Meat Science, 75(3), 415–422.

    Article  CAS  Google Scholar 

  • Kassem, A. S., Shokr, A. Z., El-Mahdy, A. R., Aboukarima, A. M., & Hamed, E. Y. (2011). Comparison of drying characteristics of Thompson seedless grapes using combined microwave oven and hot air drying. Journal of the Saudi Society of Agricultural Sciences, 10(1), 33–40.

    Article  Google Scholar 

  • Keskin, S. O., Summu, G., & Sahin, S. (2004). Bread baking in halogen lamp-microwave combination oven. Food Research International, 37(5), 489–495.

    Article  Google Scholar 

  • Knoerzer, K., Regier, M., & Schubert, H. (2005). Measuring temperature distributions during microwave processing. In H. Schubert & M. Regier (Eds.), The microwave processing of foods (pp. 243–263). Boca Ratón: CRC Press.

    Chapter  Google Scholar 

  • Kouchakzadeh, A., & Shafeei, S. (2010). Modeling of microwave-convective drying of pistachios. Energy Conversion and Management, 51(10), 2012–2015.

    Article  Google Scholar 

  • Kumar, P., Coronel, P., Simunovic, J., & Sandeep, K. P. (2007a). Feasibility of aseptic processing of a low-acid multiphase food product (salsa con queso) using a continuous flow microwave system. Journal of Food Science, 72(3), E121–E124.

    Article  CAS  Google Scholar 

  • Kumar, P., Coronel, P., Simunovic, J., Truong, V. D., & Sandeep, K. P. (2007b). Measurement of dielectric properties of pumpable food materials under static and continuous flow conditions. Journal of Food Science, 72(4), E117–E183.

    Article  CAS  Google Scholar 

  • Kumar, P., Coronel, P., Simunovic, J., & Sandeep, K. P. (2008a). Thermophysical and dielectric properties of salsa con queso and its vegetable ingredients at sterilization temperatures. International Journal of Food Properties, 11, 112–126.

    Article  CAS  Google Scholar 

  • Kumar, P., Coronel, P., Truong, V. D., Simunovic, J., Swartzel, K. R., Sandeep, K. P., et al. (2008b). Overcoming issues associated with the scale-up of a continuous flow microwave system for aseptic processing of vegetable purees. Food Research International, 41, 454–461.

    Article  CAS  Google Scholar 

  • Lombraña, J. I., Rodríguez, R., & Ruiz, U. (2010). Microwave-drying of sliced mushroom. Analysis of temperature control and pressure. Innovative Food Science & Emerging Technologies, 11(4), 652–660.

    Article  Google Scholar 

  • Manickavasagan, A., Jayas, D. S., & White, N. D. G. (2006). Non-uniformity of surface temperatures of grain after microwave treatment in an industrial microwave dryer. Drying Technology, 24(12), 1559–1567.

    Article  CAS  Google Scholar 

  • Matsui, K. N., Gut, J. A. W., de Oliveira, P. V., & Tadini, C. C. (2008). Inactivation kinetics of polyphenol oxidase and peroxidase in green coconut water by microwave processing. Journal of Food Engineering, 88, 169–176.

    Article  CAS  Google Scholar 

  • Megahey, E. K., McMinn, W. A. M., & Magee, T. R. A. (2005). Experimental study of microwave baking of Madeira cake batter. Food and Bioproducts Processing, 83(4), 277–287.

    Article  Google Scholar 

  • Meredith, R. (1998). Engineer’s handbook of industrial microwave heating. London: The Institution of Electrical Engineers.

    Book  Google Scholar 

  • Nebesny, E., & Budryn, G. (2003). Antioxidant activity of green and roasted coffee beans as influenced by convection and microwave roasting methods and content of certain compounds. European Food Research and Technology, 217(2), 157–163.

    Article  CAS  Google Scholar 

  • Nelson, S. O., & Datta, A. K. (2001). Dielectric properties of food materials and electric field interactions. In A. K. Datta & R. C. Anantheswaran (Eds.), Handbook of microwave technology for food applications (pp. 69–114). New York: Marcel Dekker.

    Google Scholar 

  • Pandit, R. B., Tang, J., Liu, F., & Mikhaylenko, G. (2007). A computer vision method to locate cold spots in foods in microwave sterilization processes. Pattern Recognition, 40, 3667–3676.

    Article  Google Scholar 

  • Parker, R. (2003). Introduction to food science. Albany: Delmar Thompson Learning.

    Google Scholar 

  • Picouet, P. A., Landl, A., Abadias, M., Castellari, M., & Viñas, I. (2009). Minimal processing of a Granny Smith apple puree by microwave heating. Innovative Food Science and Emerging Technologies., 10(4), 545–550.

    Article  CAS  Google Scholar 

  • Pilli, T., Giuliani, R., Derossi, A., & Severini, C. (2009). Study of cooking quality of spaguetti dried through microwaves and comparison with hot air dried pasta. Journal of Food Engineering, 95(3), 453–459.

    Article  Google Scholar 

  • Ratanadecho, P., Aoki, K., & Akahori, M. (2002). A numerical and experimental investigation of the modeling of microwave heating for liquid layers using a rectangular wave guide (effects of natural convection and dielectric properties). Applied Mathematical Modeling, 26, 449–472.

    Article  Google Scholar 

  • Ruíz-Díaz, G., Martínez-Monzó, J., Fito, P., & Chiralt, A. (2003). Modelling of dehydration-rehydration of orange slices in combined microwave/air drying. Innovative Food Science & Emerging Technologies, 4(2), 203–209.

    Article  Google Scholar 

  • Sabliov, C. M., Boldor, D., Coronel, P., & Sanders, T. H. (2008). Continuous microwave processing of peanut beverages. Journal of Food Processing and Preservation., 32, 935–945.

    Article  Google Scholar 

  • Salvi, D., Ortego, J., Arauz, C., Sabliov, C. M., & Boldor, D. (2009). Experimental study of the effect of dielectric and physical properties on temperature distribution in fluids during continuous flow microwave heating. Journal of Food Engineering, 93, 149–157.

    Article  Google Scholar 

  • Sarimeseli, A. (2011). Microwave drying characteristics of coriander (Coriandrum sativum L.) leaves. Energy Conversion and Management, 52(2), 1449–1453.

    Article  Google Scholar 

  • Seyhun, N., Ramaswamy, H., Sumnu, G., Sahin, S., & Ahmed, J. (2009). Comparison and modeling of microwave tempering and infrared assisted microwave tempering of frozen potato puree. Journal of Food Engineering, 92(3), 339–344.

    Article  Google Scholar 

  • Sharma, G. P., & Prasad, S. (2006). Optimization of process parameters for microwave drying of garlic cloves. Journal of Food Engineering, 75, 441–446.

    Article  Google Scholar 

  • Silva, F. A., Marsaioli, A., Jr., Maximo, G. J., Silva, M. A. A. P., & Gonçalves, L. A. G. (2006). Microwave assisted drying of macadamia nuts. Journal of Food Engineering, 77(3), 550–558.

    Article  Google Scholar 

  • Singh, R. P., & Heldman, D. R. (2009). Introduction to food engineering (4th ed.). Burlington: Academic Press.

    Google Scholar 

  • Sosa-Morales, M. E., Tiwari, G., Wang, S., Tang, J., García, H. S., & López-Malo, A. (2009). Dielectric heating as a potential post-harvest treatment of disinfesting mangoes I: Relation between dielectric properties and ripening. Biosystems Engineering, 113, 297–303.

    Article  Google Scholar 

  • Sosa-Morales, M.E., Méndez-Obregón, M. & López-Malo, A. (2010a). Microwave thermal treatment for an ostrich meat ready-to-serve dinner. ASABE Annual International Meeting, 20–23 June 2010, Pittsburgh, Pennsylvania. Paper Number 1009949.

  • Sosa-Morales, M. E., Valerio-Junco, L., López-Malo, A., & García, H. S. (2010b). Dielectric properties of foods: Reported data in the 21st century and their potential applications. LWT-Food Science and Technology, 43, 1169–1179.

    Article  CAS  Google Scholar 

  • Suárez, C., Viollaz, P. E., Rovedo, C. O., Tolaba, M. P., & Haros, M. (2000). Improved drying techniques and microwave food processing. In S. M. Alzamora, M. S. Tapia, & A. López-Malo (Eds.), Minimally processed fruits and vegetables (pp. 175–188). Gaithersburg: Aspen.

    Google Scholar 

  • Sumnu, G., & Sahin, S. (2005). Recent developments in microwave heating. In D.-W. Sun (Ed.), Emerging technologies for food processing (pp. 419–444). San Diego: Elsevier.

    Chapter  Google Scholar 

  • Sumnu, G., Sahin, S., & Sevimli, M. (2005a). Microwave, infrared and infrared-microwave combination baking of cakes. Journal of Food Engineering, 71(2), 150–155.

    Article  Google Scholar 

  • Sumnu, G., Turabi, E., & Oztop, M. (2005b). Drying of carrots in microwave and halogen lamp-microwave combination ovens. LWT-Food Science and Technology, 38(5), 549–553.

    Article  CAS  Google Scholar 

  • Taher, B. J., & Farid, M. M. (2001). Cyclic microwave thawing of frozen meat: experimental and theorical investigation. Chemical Engineering and Processing, 40(4), 379–389.

    Article  CAS  Google Scholar 

  • Tajchakavit, S., Ramaswamy, H. S., & Ramaswamy, H. S. (1997). Thermal vs. microwave inactivation kinetics of pectinmethylesterase in orange juice under batch mode heating conditions. Lebensmittel-Wissenschaft und-Technologie, 30(1), 85–93.

    Article  CAS  Google Scholar 

  • Tajchakavit, S., Ramaswamy, H. S., & Fustier, P. (1998). Enhanced destruction of spoilage microorganism in apple juice during continuous flow microwave heating. Food Research International, 31(10), 713–722.

    Article  Google Scholar 

  • Tang, J., Hao, F., & Lau, M. (2002). Microwave heating in food processing. In X. Harrison & J. Tang (Eds.), Advances in bioprocessing engineering (pp. 1–44). New York: World Scientific.

    Chapter  Google Scholar 

  • Tang, Z., Mikhaylenko, G., Liu, F., Mah, J., Pandit, R., Younce, F., et al. (2008). Microwave sterilization of sliced beef in gravy in 7-oz trays. Journal of Food Engineering, 89, 375–383.

    Article  Google Scholar 

  • Therdthai, N., & Zhou, W. (2009). Characterization of microwave vacuum drying and hot air drying of mint leaves (Mentha cordifolia Opiz ex Fresen). Journal of Food Engineering, 91(3), 482–489.

    Article  Google Scholar 

  • Uysal, N., Summu, G., & Sahin, S. (2009). Optimization of microwave-infrared roasting of hazelnut. Journal of Food Engineering, 90(2), 255–261.

    Article  Google Scholar 

  • Vadivambal, R., & Jayas, D. S. (2010). Non-uniform temperature distribution during microwave heating of food materials—A review. Food and Bioprocess Technology, 3, 161–171.

    Article  Google Scholar 

  • Vais, A. E., Palazoglu, T. K., Sandeep, K. P., & Daubert, C. R. (2002). Rheological characterization of carboxymethylcellulose solution under aseptic processing conditions. Journal of Food Process Engineering, 25(1), 41–61.

    Article  Google Scholar 

  • Valero, E., Villamiel, M., Sanz, J., & Martínez-Castro, I. (2000). Chemical and sensorial changes in milk pasteurised by microwave and conventional systems during cold storage. Food Chemistry, 70, 77–81.

    Article  CAS  Google Scholar 

  • Varith, J., Dijkanarukkul, P., Achariyaviriya, A., & Achariyaviriya, S. (2007). Combined microwave-hot air drying of peeled longan. Journal of Food Engineering, 81(2), 459–468.

    Article  Google Scholar 

  • Venkatesh, M. S., & Raghavan, G. S. V. (2004). An overview of microwave processing and dielectric properties of agri-food materials. Biosystems Engineering, 88(1), 1–18.

    Article  Google Scholar 

  • Venkatesh, M. S., & Raghavan, G. S. V. (2005). An overview of dielectric properties measuring techniques. Canadian Biosystems Engineering, 47, 7.15–7.30.

    Google Scholar 

  • Villamiel, M., Corzo, N., Martínez-Castro, I., & Olano, A. (1996). Chemical changes during microwave treatment of milk. Food Chemistry, 56(4), 385–388.

    Article  CAS  Google Scholar 

  • Wang, W., & Guohua, C. (2005). Heat and mass transfer model of dielectric-material-assisted microwave freeze drying of skim milk with hygroscopic effect. Chemical Engineering Science, 60(23), 6542–6550.

    Article  CAS  Google Scholar 

  • Wang, Y., & Wang, J. (2009). Computer simulation of radio frequency heating. In S. Jun & J. M. Irudayaraj (Eds.), Food processing operations modeling (pp. 81–112). Boca Ratón: CRC Press.

    Google Scholar 

  • Wang, Y., Wig, T. D., Tang, J., & Hallberg, L. M. (2003). Dielectric properties of foods relevant to RF and microwave pasteurization and sterilization. Journal of Food Engineering, 57, 257–268.

    Article  Google Scholar 

  • Wang, R., Zhang, M., & Mujumdar, A. S. (2010a). Effect of food ingredient on microwave freeze drying of instant vegetable soup. LWT-Food Science and Technology, 43(7), 1144–1150.

    Article  CAS  Google Scholar 

  • Wang, R., Zhang, M., & Mujumdar, A. S. (2010b). Effects of vacuum and microwave freeze drying on microstructure and quality of potato slices. Journal of Food Engineering, 101(2), 131–139.

    Article  Google Scholar 

  • Yam, K. L., & Lai, C. C. (2006). Microwable frozen food or meals. In Y. H. Hui (Ed.), Handbook of food science, technology and engineering (pp. 113-1–113-8). Boca Ratón: CRC Press.

    Google Scholar 

  • Yang, H. W., & Gunasekaran, S. (2004). Comparison of temperature distribution in model food cylinders based on Maxwell’s equations and Lambert’s law during pulsed microwave heating. Journal of Food Engineering, 64, 445–453.

    Article  Google Scholar 

  • Yuan, F., & Pal, R. (1995). Measurement of solids concentration in aqueous slurries using a microwave technique. Chemical Engineering Science, 50(22), 3525–3533.

    Article  CAS  Google Scholar 

  • Zhao, S., Xiong, S., Qiu, C., & Xu, Y. (2007). Effect of microwaves on rice quality. Journal of Stored Products Research, 43(4), 496–502.

    Article  Google Scholar 

  • Zhu, J., Kuznetsov, A. V., & Sandeep, K. P. (2007). Mathematical modeling of continuous flow microwave heating of liquids (effects of dielectric properties and design parameters). International Journal of Thermal Sciences, 46, 328–341.

    Article  Google Scholar 

  • Zook, D. E., Macku, C., & Deming, D. (1995). Effect of microwave heating on roasted nut flavor. Developments in Food Science, 37, 1493–1518.

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank the CONACyT (Consejo Nacional de Ciencia y Tecnología, Mexico) for providing financial support for scholarship to author C. Salazar-González and project 084859.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria E. Sosa-Morales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salazar-González, C., San Martín-González, M.F., López-Malo, A. et al. Recent Studies Related to Microwave Processing of Fluid Foods. Food Bioprocess Technol 5, 31–46 (2012). https://doi.org/10.1007/s11947-011-0639-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0639-y

Keywords

Navigation