Skip to main content

Advertisement

Log in

RET TKI: Potential Role in Thyroid Cancers

  • Evolving Therapies (RM Bukowski, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

The increasing incidence of thyroid cancer is associated with a higher number of advanced disease characterized by the loss of cancer differentiation and metastatic spread. The knowledge of the molecular pathways involved in the pathogenesis of thyroid cancer has made possible the development of new therapeutic drugs able to blockade the oncogenic kinases (RET/PTC) or signaling kinases (vascular endothelial growth factor receptor [VEGFR]) involved in cellular growth and proliferation. Some clinical trials have been conducted showing the ability of targeted therapies able to inhibit RET (sorafenib, imatinib, vandetanib) in stabilizing the course of the disease. The aim of the introduction of these targeted therapies is to extend life duration assuring a good quality of life; however, further studies are needed to reach these goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA. 2006;295(18):2164–7.

    Article  PubMed  CAS  Google Scholar 

  2. Ries LAG, et al (eds). SEER cancer statistics review, 1975–2001, National Cancer Institute, Bethesda, MD, 2004. Available at: seer.cancer.gov/csr/1975–2001.

  3. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2007. CA Cancer J Clin. 2007;57(1):43–66.

    Article  PubMed  Google Scholar 

  4. Hundahl SA, Fleming ID, Fremgen AM, et al. A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995 [see commetns]. Cancer. 1998;83(12):2638–48.

    Article  PubMed  CAS  Google Scholar 

  5. Antonelli A, Miccoli P, Derzhitski VE, et al. Epidemiologic and clinical evaluation of thyroid cancer in children from the Gomel region (Belarus). World J Surg. 1996;20(7):867–71.

    Article  PubMed  CAS  Google Scholar 

  6. Antonelli A, Fallahi P, Grosso M, et al. Lobectomy versus total thyroidectomy in children with post-Chernobyl thyroid cancer: a 15 year follow-up. Endocrine. 2011 Jun 23.

  7. Wartofsky L. Increasing world incidence of thyroid cancer: increased detection or higher radiation exposure? Hormones (Athens). 2010;9(2):103–8.

    Google Scholar 

  8. Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7(10):569–80.

    Article  PubMed  CAS  Google Scholar 

  9. de Groot JW, Links TP, Plukker JT, et al. RET as a diagnostic and therapeutic target in sporadic and hereditary endocrine tumors. Endocr Rev. 2006;5:535–60.

    Article  Google Scholar 

  10. Pasini B, Hofstra RM, Yin L, et al. The physical map of the human RET proto-oncogene. Oncogene. 1995;11(9):1737–43.

    PubMed  CAS  Google Scholar 

  11. Anders J, Kjar S, Ibanez CF. Molecular modeling of the extracellular domain of the RET receptor tyrosine kinase reveals multiple cadherin-like domains and calcium-binding site. J Biol Chem. 2001;276(38):35808–17.

    Article  PubMed  CAS  Google Scholar 

  12. Plaza-Menacho I, Burzynski GM, De Groot JW, et al. Current concepts in RET-related genetics, signaling and therapeutics. Trends Genet. 2006;22(11):627–36.

    Article  PubMed  CAS  Google Scholar 

  13. Pandey A, Duan H, Di Fiore PP, et al. The Ret receptor protein tyrosine kinase associates with the SH2-containing adapter protein Grb10. J Biol Chem. 1995;270(37):21461–3.

    Article  PubMed  CAS  Google Scholar 

  14. Salvatore D, Barone MV, Salvatore G, et al. Tyrosines 1015 and 1062 are in vivo autophosphorylation sites in ret and ret-derived oncoproteins. J Clin Endocrinol Metab. 2000;85(10):3898–907.

    Article  PubMed  CAS  Google Scholar 

  15. Kato M, Takeda K, Kawamoto Y, et al. Repair by Src kinase of function-impaired RET with multiple endocrine neoplasia type 2A mutation with substitutions of tyrosines in the COOH-terminal kinase domain for phenylalanine. Cancer Res. 2002;62(8):2414–22.

    PubMed  CAS  Google Scholar 

  16. Santarpia L, Myers JN, Sherman SI, et al. Genetic alterations in the RAS/RAF/mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways in the follicular variant of papillary thyroid carcinoma. Cancer. 2010;116(12):2974–8.

    Article  PubMed  CAS  Google Scholar 

  17. Santoro M, Chiappetta G, Cerrato A, et al. Development of thyroid papillary carcinomas secondary to tissue-specific expression of the RET/PTC1 oncogene in transgenic mice. Oncogene. 1996;12(8):1821–6.

    PubMed  CAS  Google Scholar 

  18. Mitsutake N, Miyagishi M, Mitsutake S, et al. BRAF mediates RET/PTC-induced mitogen-activated protein kinase activation in thyroid cells: functional support for requirement of the RET/PTC-RAS-BRAF pathway in papillary thyroid carcinogenesis. Endocrinology. 2006;147(2):1014–9.

    Article  PubMed  CAS  Google Scholar 

  19. Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353(2):172–87.

    Article  PubMed  CAS  Google Scholar 

  20. Antonelli A, Fallahi P, Ferrari SM, et al. Dedifferentiated thyroid cancer: a therapeutic challenge. Biomed Pharmacother. 2008;62(8):559–63.

    Article  PubMed  CAS  Google Scholar 

  21. Fenton CL, Lukes Y, Nicholson D, et al. The ret/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. J Clin Endocrinol Metab. 2000;85(3):1170–5.

    Article  PubMed  CAS  Google Scholar 

  22. Santoro M, Dathan NA, Berlingieri MT, et al. Molecular characterization of RET/PTC3; a novel rearranged version of the RETproto-oncogene in a human thyroid papillary carcinoma. Oncogene. 1994;9(2):509–16.

    PubMed  CAS  Google Scholar 

  23. Powell Jr DJ, Russell J, Nibu K, et al. The RET/PTC3 oncogene: metastatic solid-type papillary carcinomas in murine thyroids. Cancer Res. 1998;58(23):5523–8.

    PubMed  CAS  Google Scholar 

  24. Nikiforov YE, Rowland JM, Bove KE, et al. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 1997;57(9):1690–4.

    PubMed  CAS  Google Scholar 

  25. Antonelli A, Ferrari SM, Fallahi P, et al. Medullary thyroid cancer: new targeted molecular therapies. Recent Pat Endocr Metab Immune Drug Discov. 2010;4(1):10–4. 5.

    Article  CAS  Google Scholar 

  26. Ball DW, Baylin SB, De Butros AC. Medullary thyroid carcinoma. In: BravermanLE UtigerRD, editor. Werner and Ingbar’s the thyroid. 8th ed. Philadelphia: Lippincott Williams and Wilkins; 2000. p. 930–43.

    Google Scholar 

  27. Kebebew E, Clark OH. Medullary thyroid cancer. Curr Treat Options Oncol. 2000;1(14):359–67.

    Article  PubMed  CAS  Google Scholar 

  28. Weber T, Shilling T, Buchler MW. Thyroid carcinoma. Curr Opin Oncol. 2006;18(1):30–5.

    PubMed  Google Scholar 

  29. Drosten M, Pützer BM. Mechanisms of Disease: cancer targeting and the impact of oncogenic RET for medullary thyroid carcinoma therapy. Nat Clin Pract Oncol. 2006;3(10):564–74.

    Article  PubMed  CAS  Google Scholar 

  30. Verdy M, Weber AM, Roy CC, et al. Hirschsprung’s disease in a family with multiple endocrine neoplasia type 2. J Pediatric Gastroenterol Nutr. 1982;1(14):603–7.

    CAS  Google Scholar 

  31. Gagel RF, Levy ML, Donovan DT, et al. Multiple endocrine neoplasia type 2a associated with cutaneous lichen amyloidosis. Ann Intern Med. 1989;111(10):802–6.

    PubMed  CAS  Google Scholar 

  32. Farndon JR, Leight GS, Dilley WG, et al. Familial medullary thyroid carcinoma without associated endocrinopathies: a distinct clinical entity. Br J Surg. 1986;73(4):278–81.

    Article  PubMed  CAS  Google Scholar 

  33. Williams ED, Pollock DJ. Multiple mucosal neuromata with endocrine tumours: a syndrome allied to von Recklinghausen’s disease. J Pathol Bacteriol. 1966;91(1):71–80.

    Article  PubMed  CAS  Google Scholar 

  34. Arighi E, Borrello MG, Sariola H. RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev. 2005;16(4–5):441–67.

    Article  PubMed  CAS  Google Scholar 

  35. Castellone MD, Santoro M. Dysregulated RET signaling in thyroid cancer. Endocrinol Metab Clin North Am. 2008;37(2):363–74.

    Article  PubMed  CAS  Google Scholar 

  36. Croyle M, Akeno N, Knauf JA, et al. RET/PTC-induced cell growth is mediated in part by epidermal growth factor receptor (EGFR) activation: evidence for molecular and functional interactions between RET and EGFR. Cancer Res. 2008;68(11):4183–91.

    Article  PubMed  CAS  Google Scholar 

  37. Lorusso PM, Eder JP. Therapeutic potential of novel selective-spectrum kinase inhibitors in oncology. Expert Opin Investig Drugs. 2008;17(7):1013–28.

    Article  PubMed  CAS  Google Scholar 

  38. Antonelli A, Ferri C, Ferrari SM, et al. New targeted molecular therapies for dedifferentiated thyroid cancer. J Oncol. 2010;2010:921682.

    PubMed  Google Scholar 

  39. Carlomagno F, Vitagliano D, Guida T, et al. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res. 2002;62(24):7284–90.

    PubMed  CAS  Google Scholar 

  40. Vieira JM, Santos SC, Espadinha C, et al. Expression of vascular endothelial growth factor (VEGF) and its receptors in thyroid carcinomas of follicular origin: a potential autocrine loop. Eur J Endocrinol. 2005;153(5):701–9.

    Article  PubMed  CAS  Google Scholar 

  41. Elliott DD, Sherman SI, Busaidy NL, et al. Growth factor receptors expression in anaplastic thyroid carcinoma: potential markers for therapeutic stratification. Hum Pathol. 2008;39(1):15–20.

    Article  PubMed  CAS  Google Scholar 

  42. McGregor LM, McCune BK, Graff JR, et al. Roles of trk family neurotrophin receptors in medullary thyroid carcinoma development and progression. Proc Natl Acad Sci USA. 1999;96(13):4540–5.

    Article  PubMed  CAS  Google Scholar 

  43. Mitsiades CS, Kotoula V, Poulaki V, et al. Epidermal growth factor receptor as a therapeutic target in human thyroid carcinoma: mutational and functional analysis. J Clin Endocrinol Metab. 2006;91(9):3662–6.

    Article  PubMed  CAS  Google Scholar 

  44. Cuccuru G, Lanzi C, Cassinelli G, et al. Cellular effects and antitumor activity of RET inhibitor RPI-1 on MEN2A-associated medullary thyroid carcinoma. J Natl Cancer Inst. 2004;96(13):1006–14.

    Article  PubMed  CAS  Google Scholar 

  45. Strock CJ, Park JI, Rosen M, et al. CEP-701 and CEP-751 inhibit constitutively activated RET tyrosine kinase activity and block medullary thyroid carcinoma cell growth. Cancer Res. 2003;63(17):5559–63.

    PubMed  CAS  Google Scholar 

  46. Carniti C, Perego C, Mondellini P, et al. PP1 inhibitor induces degradation of RETMEN2A and RETMEN2B oncoproteins through proteosomal targeting. Cancer Res. 2003;63(9):2234–43.

    PubMed  CAS  Google Scholar 

  47. Carlomagno F, Vitagliano D, Guida T, et al. Efficient inhibition of RET/papillary thyroid carcinoma oncogenic kinases by 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). J Clin Endocrinol Metab. 2003;88(4):1897–902.

    Article  PubMed  CAS  Google Scholar 

  48. Schlumberger M. Kinase inhibitors for refractory thyroid cancers. Lancet Oncol. 2010;11(10):912–3.

    Article  PubMed  Google Scholar 

  49. Sherman SI. Targeted therapy of thyroid cancer. Biochem Pharmacol. 2010;80(5):592–601.

    Article  PubMed  CAS  Google Scholar 

  50. •• Gupta-Abramson V, Troxel AB, Nellore A, et al. Phase II trial of sorafenib in advanced thyroid cancer. J Clin Oncol. 2008;26(29):47149. Phase II clinical trial of sorafenib in thyroid cancer.

  51. •• Kloos RT, Ringel MD, Knopp MV, et al. Phase II trial of sorafenib in metastatic thyroid cancer. J Clin Oncol. 2009;27(10):167584. Phase II clinical trial of sorafenib in thyroid cancer.

  52. •• Hoftijzer H, Heemstra KA, Morreau H, et al. Beneficial effects of sorafenib on tumor progression, but not on radioiodine uptake, in patients with differentiated thyroid carcinoma. Eur J Endocrinol. 2009;161(6):92331. Phase II clinical trial of sorafenib in thyroid cancer.

  53. •• Lam ET, Ringel MD, Kloos RT, et al. Phase II clinical trial of sorafenib in metastatic medullary thyroid cancer. J Clin Oncol. 2010;28(14):232330. Phase II clinical trial of sorafenib in thyroid cancer.

  54. •• Capdevila J, Iglesias L, Halperin I, et al. Sorafenib in patients (pts) with advanced thyroid carcinoma (TC): a compassionate use program. J Clin Oncol 28(Suppl. 15). 2010 (2010 ASCO Annual Meeting, Abstract 5590). Phase II clinical trial of sorafenib in thyroid cancer.

  55. •• Nexavar® Versus Placebo in Locally Advanced/Metastatic RAI-Refractory Differentiated Thyroid Cancer (NCT00984282) http://clinicaltrials.gov/ct2/show/NCT00984282?term=NCT00984282&rank=1. Phase III clinical trial of sorafenib in thyroid cancer.

  56. •• Brose MS, Nutting CM, Sherman SI, et al. Rationale and design of decision: a double-blind, randomized, placebo-controlled phase III trial evaluating the efficacy and safety of sorafenib in patients with locally advanced or metastatic radioactive iodine (RAI)-refractory, differentiated thyroid cancer. BMC Cancer. 2011;11:349. Phase III clinical trial of sorafenib in thyroid cancer.

  57. •• Efficacy of XL184 (Cabozantinib) in Advanced Medullary Thyroid Cancer http://clinicaltrials.gov/ct2/show/NCT00704730?term=phase+III%2C+thyroid+cancer&rank=4 (NCT00704730). Phase III clinical trial of XL184 in thyroid cancer.

  58. • Verbeek HH, Alves MM, de Groot JW, et al. The Effects of Four Different Tyrosine Kinase Inhibitors on Medullary and Papillary Thyroid Cancers Cells. J Clin Endocrinol Metab. 2011; 96(6):E9915. In vitro study of tyrosine kinase inhibitors in medullary thyroid cancer cells.

  59. Cui JJ. Inhibitors targeting hepatocyte growth factor receptor and their potential therapeutic applications. Expert Opin Ther Pat. 2007;17(9):1035–45.

    Article  CAS  Google Scholar 

  60. •• Kurzrock R, Sherman SI, Ball DW, et al. Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol. 2011;29(19):26606. Phase II clinical trial of cabozantinib in thyroid cancer.

  61. de Groot JW, Zonnenberg BA, van Ufford-Mannesse PQ, et al. A phase II trial of imatinib therapy for metastatic medullary thyroid carcinoma. J Clin Endocrinol Metab. 2007;92(9):3466–9.

    Article  PubMed  Google Scholar 

  62. • Coxon A, Bready J, Estrada J, et al. Antintumor Activity of Motesanib in a Medullary Thyroid Cancer Model. J Endocrinol Invest. 2011 Mar 21. In vitro study of tyrosine kinase inhibitors in medullary thyroid cancer cells.

  63. • Samady AK, Mukerji R, Shah A, et al. A novel RET inhibitor with potent efficacy against medullary thyroid cancer in vivo. Surgery. 2010;148(6):122836. In vitro study of tyrosine kinase inhibitors in medullary thyroid cancer cells.

  64. •• Wells SA Jr, Gosnell JE, Gagel RF, et al. Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Oncol. 2010;28(5):76772. Phase II clinical trial of vandetanib in thyroid cancer.

  65. •• Robinson BG, Paz-Ares L, Krebs A, et al. Vandetanib (100 mg) in patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Endocrinol Metab. 2010;95(6):266471. Phase II clinical trial of vandetanib in thyroid cancer.

  66. •• Commander H, Whiteside G, Perry C. Vandetanib: first global approval. Drugs. 2011;71(10):1355–65. Phase II clinical trial of vandetanib in thyroid cancer.

  67. Blumenthal RD, Goldenberg DM. Methods and goals for the use of in vitro and in vivo chemosensitivity testing. Mol Biotechnol. 2007;35(2):185–97.

    Article  PubMed  CAS  Google Scholar 

  68. Sawyers CL. Disabling Abl-perspectives on Abl kinase regulation and cancer therapeutics. Cancer Cell. 2002;1(1):13–5.

    Article  PubMed  CAS  Google Scholar 

  69. • Antonelli A, Ferrari SM, Fallahi P, et al. Thiazolidinediones and antiblastics in primary human anaplastic thyroid cancer cells. Clin Endocrinol (Oxf). 2009;70(6):94653. In vitro first study evaluating sensitivity to chemotherapeutics and thiazolidinediones in cells obtained from anaplastic thyroid cancer.

  70. • Antonelli A, Ferrari SM, Fallahi P, et al. Evaluation of the sensitivity to chemotherapeutics or thiazolidinediones of primary anaplastic thyroid cancer cells obtained by fine-needle aspiration. Eur J Endocrinol. 2008;159(3):28391. In vitro first study evaluating sensitivity to chemotherapeutics and thiazolidinediones in cells obtained by fine-needle aspiration.

  71. • Antonelli A, Ferrari SM, Fallahi P, et al. Primary cell cultures from anaplastic thyroid cancer obtained by fine-needle aspiration used for chemosensitivity tests. Clin Endocrinol (Oxf). 2008;69(1):14852. In vitro first study evaluating sensitivity to chemotherapeutics in cells obtained by fine-needle aspiration.

  72. •• Antonelli A, Bocci G, La Motta C, et al. Novel pyrazolopyrimidine derivatives as tyrosine kinase inhibitors with antitumoral activity in vitro and in vivo in papillary dedifferentiated thyroid cancer. J Clin Endocrinol Metab. 2011:96(2):E28896. First study showing the effect of tyrosine kinase inhibitors in primary cells obtained from DePTC.

  73. Schlumberger MJ, Elisei R, Bastholt L, et al. Phase II study of safety and efficacy of motesanib in patients with progressive or symptomatic, advanced or metastatic medullary thyroid cancer. J Clin Oncol. 2009;27(23):3794–801.

    Article  PubMed  CAS  Google Scholar 

  74. Brassard M, Neraud B, Trabado S, et al. Endocrine effects of the tyrosine kinase inhibitor vandetanib in patients treated for thyroid cancer. J Clin Endocrinol Metab. 2011;96(9):2741–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Antonelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonelli, A., Fallahi, P., Ferrari, S.M. et al. RET TKI: Potential Role in Thyroid Cancers. Curr Oncol Rep 14, 97–104 (2012). https://doi.org/10.1007/s11912-012-0217-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-012-0217-0

Keywords

Navigation