Skip to main content
Log in

Methods and goals for the use of in vitro and in vivo chemosensitivity testing

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Sensitive, specific, and accurate methods to assay chemosensitivity are needed to (1) screen new therapeutic agents, (2) identify patterns of chemosensitivity for different tumor types, (3) establish patterns of cross-resistance and sensitivity in treatment of naïve and relapsing tumors, (4) identify genomic and proteomic profiles associated with sensivity, (5) correlate in vitro response with preclinical in vivo effects and clinical outcomes for a particular therapeutic agent, and (6) tailor chemotherapy regimens to individual patients. Various methods are available to achieve these end points, including several in vitro clonogenic and proliferation assays, cell metabolic activity assays, molecular assay to monitor expression of markers for responsiveness, drug resistance, and for induction of apoptosis, in vivo tumor growth and survival assays in metastatic and orthotopic models, and in vivo imaging assays. The advantages and disadvantages of the specific assays are discussed. A summary of research questions related to chemosensitivity testing is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nagourney, R. A. 2006. Ex vivo programmed cell death and the prediction of response to chemotherapy. Curr. Treat. Options Oncol. 7, 103–110.

    Article  PubMed  Google Scholar 

  2. Chow, K. U., Nowak, D., Kim, S. Z., et al. 2006. In vivo drug-response in patients with leukemic non-Hodgkin's lymphomas is associated with in vitro chemosensitivity and gene expression profiling. Pharmacol. Res. 53, 49–61.

    Article  PubMed  CAS  Google Scholar 

  3. Noguchi, K., Iwahashi, M., Tani, M., et al. 2005. Evaluation of chemosensitivity testing with highly purified tumor cells in 435 patients with gastric carcinoma using an MTT assay. Anticancer Res. 25, 931–937.

    PubMed  CAS  Google Scholar 

  4. Trojan, J., Kim, S. Z., Engels, K., Kriener, S., Mitrou, P. S., and Chow, K. U. 2005. In vitro chemosensitivity to gemcitabine, oxaliplatin and zoledronic acid predicts treatment response in metastatic gastric cancer. Anticancer Drugs 16, 87–91.

    Article  PubMed  CAS  Google Scholar 

  5. Kaspers, G., Zwaan, C., Pieters, R., and Veerman, A. 1999. Cellular drug resistance in childhood acute myeloid leukemia. A mini-review with emphasis on cell culture assay. Adv. Exp. Med. Biol. 457, 415–421.

    PubMed  CAS  Google Scholar 

  6. Robert, J. 1999. Chemosensitivity Testing: Prediction of response to anticancer drugs using in vitro assays. Electronic J. Oncol. 2, 198–210.

    Google Scholar 

  7. Bellamy, W. 1992. Prediction of response to drug therapy of cancer. A review of in vitro assay. Drugs 44, 690–708.

    PubMed  CAS  Google Scholar 

  8. Gercel-Taylor, C., Ackermann, M., and Taylor, D. 2001. Evaluation of cell proliferation and cell death based assays in chemosensitivity testing. Anticancer Res. 21, 2761–2768.

    PubMed  CAS  Google Scholar 

  9. Von Hoff, D., Clark, G., Stogill, B., et al. 1983. Prospective clinical trial of a human tumor cloning system. Cancer Res. 43.

  10. Engblom, P., Rantanen, V., Kulmala, J., and Grenman, S. 1996. Paclitaxel and cisplatin sensitivity of ovarian carcinoma cell lines tested with a 96-well plate clonogenic assay. Anticancer Res. 16, 1743–1747.

    PubMed  CAS  Google Scholar 

  11. Fiebig, H. H., Maier, A., and Burger, A. M. 2004. Clonogenic assay with, established human tumour xenografts: correlation of in vitro to in vivo activity as a basis for anticancer drug discovery. Eur. J. Cancer 40, 802–820.

    Article  PubMed  CAS  Google Scholar 

  12. Dollner, R., Granzow, C., Neudert, M., and Dietz, A. 2006. Ex vivo chemosensitivity of head and neck carcinoma to cytostatic drug combinations. Anticancer Res. 26, 1651–1655.

    PubMed  CAS  Google Scholar 

  13. Weisenthal, L., Marsden, J., Dill, P., and Macaluso, C. 1983. A novel dye exclusion method for testing in vitro chemosensitivity of human tumors. Cancer Res. 43, 749–757.

    PubMed  CAS  Google Scholar 

  14. Kern, D., Drozemuller, C., Kennedy, M., et al. 1985. Development of a miniaturized improved nucleic acid precursor incorporation assay for chemosensitivity testing of human solid tumors. Cancer Res. 45, 5436–5441.

    PubMed  CAS  Google Scholar 

  15. Sondak, V., Bertelson, C., Tanigawa, N., et al. 1984. Clinical correlations with chemosensitivities measured in a rapid thymidine incorporation assay. Cancer Res. 46, 1725–1728.

    Google Scholar 

  16. Kobayashi, H., Higashiyami, M., Minamigawa, K., et al. 2001. Examination of in vitro chemosensitivity test using collagen gel droplet culture method with colorimetric endpoint quantitation. Jpn. J. Cancer Res. 92, 203–210.

    PubMed  CAS  Google Scholar 

  17. Kangas, L., Gronroos, M., and Nieminen, A. 1984. Bioluminesence of cellular ATP: a new method for evaluating cytotoxic agents in vitro. Med. Biol. 62, 338–343.

    PubMed  CAS  Google Scholar 

  18. Csoka, K., Larsson, R., Tholander, B., Gerdin, E., de la Torre, M., and Nygren, P. 1994. Cytotoxic drug sensitivity testing of tumor cells from patients with ovarian carcinoma using the fluorometric microculture cytotoxicity assay (FMCA). Gynecol. Oncol. 54, 163–170.

    Article  PubMed  CAS  Google Scholar 

  19. Rubinstein, L., Shoemaker, R., Pacell, K., Simon, R., and Tosini, S. 1990. Comparison of an in vitro anti-cancer drug screening data generated with a tetrazoilum assay versus a protein assay against a di verse panel of human tumor cells lines. J. Natl. Cancer Inst. 82, 1113–1118.

    Article  PubMed  CAS  Google Scholar 

  20. Krasna, L., Netikova, I., Chaloupkova, A., et al. 2003. Assessment of in vitro drug resistance of human breast cancer cells subcultured from biopsy specimens. Anticancer Res. 23, 2593–2599.

    PubMed  CAS  Google Scholar 

  21. Sevin, B., Peng, Z., Perras, J., Panalver, G., and Averette, H. 1988. Application of an ATP bioluminescence assay in human tumor chemosensitivity testing. Gynecol. Oncol. 31, 191–204.

    Article  PubMed  CAS  Google Scholar 

  22. Andreotti, P., Gree, I., Kurbacher, C., et al. 1995. Chemosensitivity testing of human tumors using a microplate adenosine triphosphate luminescence assay: clinical correlation for cisplatin resistance of ovarian carcinoma. Cancer Res. 55, 5276–5282.

    PubMed  CAS  Google Scholar 

  23. Steff, A., Fortin, M., Arguin, C., and Hugo, P. 2001. Detection of a decrease in green fluorescent protein fluorescence forthe monitoring of cell death: an assay amenable to high-throughput screening technologies. Cytometry. 45, 237–243.

    Article  PubMed  CAS  Google Scholar 

  24. Waldenmaier, D. S., Babarina, A., and Kischkel, F. C. 2003. Rapid in vitro chemosensitivity analysis of human colon tumor cell lines. Toxicol. Appl. Pharmacol. 192, 237–245.

    Article  PubMed  CAS  Google Scholar 

  25. Otto, A. M., Brischwein, M., Niendorf, A., Henning, T., Motrescu, E., and Wolf, B. 2003. Microphysicological testing for chemosensitivity of living tumor cells with multiparametric microsensor chips. Cancer Detect. Prev. 27, 291–296.

    Article  PubMed  CAS  Google Scholar 

  26. Vistica, D., Skehan, P., Scudiero, D., et al. 1991. Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res. 51, 2515–2520.

    PubMed  CAS  Google Scholar 

  27. Sargent, J. and Taylor, C. 1989. Appraisal of the MTT assay as a rapid test of chemosensitivity in acute myeloid leukemia. Brit. J. Cancer 60, 206–210.

    PubMed  CAS  Google Scholar 

  28. Ross, D. D., Joneckis, C. C., Ordonez, J. V., et al. 1989. Estimation of cell survival by flow cytometric quantification of fluorescein diacetate/propidium iodide viable cell number. Cancer Res. 49, 3776–3782.

    PubMed  CAS  Google Scholar 

  29. Proffitt, R. T., Tran, J. V., and Reynolds, C. P. 1996. A fluorescence digital image microscopy system for quantifying relative cell numbers in tissue culture plates. Cytometry 24, 204–213.

    Article  PubMed  CAS  Google Scholar 

  30. Hoffman, R. 1991. Three-dimensional histoculture: origins and applications in cancer research. Cancer Cells 3, 86–92.

    PubMed  CAS  Google Scholar 

  31. Singh, B., Li, R., Xyu, L., et al. 2002. Prediction of survival in patients with head and neck cancer using the histoculture drug response assay. Head Neck 24, 437–442.

    Article  PubMed  Google Scholar 

  32. Meitner, P. 1991. The fluorescence cytoprint assay: a new approach to in vitro chemosensitivity testing. Oncology 5, 75–81.

    PubMed  CAS  Google Scholar 

  33. Kern, D. and Weisenthal, L. 1990. Highly specific prediction of antineoplastic drug resistance with an in vitro assay using supra-pharmacologic drug exposures. J. Natl. Cancer Inst. 82, 582–588.

    Article  PubMed  CAS  Google Scholar 

  34. Haroun, R., Clatterbuck, R., Gibbons, M., et al. 2002. Extreme drug resistance in primary brain tumors: in vitro analysis of 64 resection specimens. J. Neurooncol. 58, 115–123.

    Article  PubMed  Google Scholar 

  35. Fenech, M. 2000. The in vitro micronucleus technique. Mutation Res. 455, 81–95.

    PubMed  CAS  Google Scholar 

  36. Fruhauf, J. and Bosanquet, A. 1993. In vitro determination of drug response: A discussion of clinical applications. PPO Updates 7, 1–21.

    Google Scholar 

  37. Reynolds, C. P. and Maurer, B. J. 2005. Evaluating response to antineoplastic drug combinations in tissue culture models. Methods Mol. Med. 110, 173–183.

    PubMed  CAS  Google Scholar 

  38. Clarke, R. 1996. Human breast cancer cell line xenografts as models of brest cancer the immunobiologies of recipient mice and the characteristics of several tumorigenic lines. Breast Cancer Res. Treat. 39, 69–86.

    Article  PubMed  CAS  Google Scholar 

  39. Hoffman, R. 1999. Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest. New Drugs 17, 343–359.

    Article  PubMed  CAS  Google Scholar 

  40. Price, J. 1996. Metastasis from human breast cancer cell lines. Breast Cancer Res. Treat. 39, 93–102.

    Article  PubMed  CAS  Google Scholar 

  41. Konovalova, N., Iatchkovskaya, R., Ganieva, L., et al. 1991. Subrenal capsule assay of human tumor chemosensitivity. Neoplasma 38, 275–284.

    PubMed  CAS  Google Scholar 

  42. Tomayko, M. and Reynolds, C. 1989. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother. Pharmacol. 24, 148–154.

    Article  PubMed  CAS  Google Scholar 

  43. Heitjan, D., Manni, A. and Santen, R. 1993. Statistical analysis of in vivo tumor growth experiments. Cancer Res. 53, 6042–6050.

    PubMed  CAS  Google Scholar 

  44. Gibbs, J., Slocum, H., Cao, S. and Rustum, Y. 1999. Image analysis for quantitation of solid tumor drug sensitivity. Int. J. Surg. Invest. 1, 133–138.

    CAS  Google Scholar 

  45. Kubota, K. 2001. From tumor biology to clinical PET: a review of positron emission tomography (PET) in oncology. Ann. Nucl. Med. 15, 471–486.

    Article  PubMed  CAS  Google Scholar 

  46. Belhocine, T., Steinmetz, N., Hustinx, R., et al. 2002. Increased uptake of the apoptosis imaging agent (99m)Tc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin. Cancer Res. 8, 2766–2774.

    PubMed  CAS  Google Scholar 

  47. Mazurchuk, R., Glaves, D., and Raghavan, D. 1997. Magnetic resonance imaging of response to chemotherapy in orthotopic xenografts of human bladder cancer. Clin. Cancer Res. 3, 1635–1641.

    PubMed  CAS  Google Scholar 

  48. Nakanishi, H., Mochizuki, Y., Kodera, Y., et al. 2003. Chemosensitivity of peritoneal micrometastases as evaluated using green fluorescence protein (GFP)-tagged human gastric cancer cell line. Cancer Sci. 94, 112–118.

    Article  PubMed  CAS  Google Scholar 

  49. Ring, A., Smith, I. E., and Dowsett, M. 2004. Circulating tumour cells in breast cancer. Lancet Oncol. 5, 79–88.

    Article  PubMed  Google Scholar 

  50. Allard, W. J., Matera, J., Miller, M. C., et al. 2004. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 10, 6897–6904.

    Article  PubMed  Google Scholar 

  51. Tewari, K. and Manetta, A. 1999. In vitro chemosensitivity testing and mechanisms of drug resistance. Curr. Oncol. Rep. 1, 77–84.

    Article  PubMed  CAS  Google Scholar 

  52. el-Deiry, W. S. 1997. Role of oncogenes in resistance and killing by cancer therapeutic agents. Curr. Opin. Oncol. 9, 79–87.

    PubMed  CAS  Google Scholar 

  53. Fan, S., el-Deiry, W., Bae, I., et al. 1994. p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. Cancer Res, 54, 5824–5830.

    PubMed  CAS  Google Scholar 

  54. Bosken, C., Wei, Q., Amos, C., and Spitz, M. 2002. An analysis of DNA repair as a determinant of survival in patients with non-small-cell lung cancer. J. Natl. Cancer Inst. 94, 1091–1099.

    PubMed  Google Scholar 

  55. Zunino, F., Perego, P., Pilotti, S., and Pratesi, G. 1997. Role of apoptotic response in cellular resistance to cytotoxic agents. Pharmacol. Ther. 76, 177–185.

    Article  PubMed  CAS  Google Scholar 

  56. Wang, Y., Ashkenazi, Y., and Bachrach, U. 1999. In vitro chemosensitivity of hematological cancers: Immunohistochemical detection of ornithine decarboxylase. Anticancer Drugs 10, 797–805.

    Article  PubMed  CAS  Google Scholar 

  57. Park, K., Rha, S., Kim, C., et al. 1998. Telomerase activity and telomere lengths in various cell lines: changes of telomerase activity can be another method for chemosensitivity evaluation. Int. J. Oncol. 13, 489–495.

    PubMed  CAS  Google Scholar 

  58. Modrak, D., Rodriguez, M., Goldenberg, D., Lew, W., and Blumenthall, R. 2002. Sphingomyelin enhances chemotherapy efficacy and increases apoptosis in human colonic tumor xenografts. Int. J. Oncol. 20, 379–384.

    PubMed  CAS  Google Scholar 

  59. Epstein, R. 1990. Drug-induced DNA damage and tumor chemosensitivity. J. Clin. Oncol. 8, 2062–2084.

    PubMed  CAS  Google Scholar 

  60. Xia, F., and Powell, S. 2002. The molecular basis of radiosensitivity and chemosensitivity in the treatment of breast cancer. Semin. Radiat. Oncol. 12, 296–304.

    Article  PubMed  Google Scholar 

  61. Manahan, K., Taylor, D., and Gercel-Taylor, C. 2001. Clonal heterogeneity of p53 mutations in ovarian cancer. Int. J. Oncol. 19, 387–394.

    PubMed  CAS  Google Scholar 

  62. Granjean, F., Bremaud, L., Verdier, M., Robert, J., and Ratinaud, M. 2001. Sequential gene expression of P-glycoprotein (P-gp), multidrug resisatnce associated protein (MRP) and lung resistance protein: functional activity of P-gp and MRP present in the doxorubicin-resistant human K562 cell lines. Anti-cancer Drugs 12, 247–258.

    Article  Google Scholar 

  63. Michieli, M., Damiani, D., Ermacora, A., et al. 2000. P-glycoprotein (PGP), lung resistance-related protein (LRP) and multidrug resisatnce-associated protein (MRP) expression in acute promyelocytic leukemia. Br. J. Haematol. 108, 703–709.

    Article  PubMed  CAS  Google Scholar 

  64. Pallis, M., Turzanski, J., Langabeer, S., and Russell, N. 1999. Reproducible flow cytometric methodology for measuring multidrug resistance in leukaemic blasts. Adv. Exp. Med. Biol. 457, 77–88.

    PubMed  CAS  Google Scholar 

  65. Pall, G., Spitaler, M., Hofmann, J., Thaler, J., and Ludescher, C. 1997. Multidrug resistance in acute leukemia: a comparison of different diagnostic methods. Leukemia 11, 1067–1072.

    Article  PubMed  CAS  Google Scholar 

  66. Singh, N. 2000. A simple method for accurate estimation of apoptotic cells. Exp. Cell Res. 256, 328–337.

    Article  PubMed  CAS  Google Scholar 

  67. Munshi, A., McDonnell, T., and Meyn, R. 2002. Chemotherapeutic agents enhance TRAIL-induced apoptosis in prostate cancer cells. Cancer Chemother. Pharmacol. 50, 46–52.

    Article  PubMed  CAS  Google Scholar 

  68. Maciorowski, Z., Klijanienko, J., Padoy, E., et al. 2001. Comparative image and flow cytometric TUNEL analysis of fine needle samples of breast carcinoma. Cytometry 46, 150–156.

    Article  PubMed  CAS  Google Scholar 

  69. Ogata, S., Okumura, K., and Taguchi, H. 2000. A simple and rapid method for the detection of poly(ADP-ribose) by flow cytometry. Biosci. Biotechnol. Biochem. 64, 510–515.

    Article  PubMed  CAS  Google Scholar 

  70. Nita, M., Nagawa, H., Tominago, O., et al. 1998. 5-Fluorouracil induces apoptosis in human colon cancer cell lines with modulation of Bcl-2 family proteins. Br. J. Cancer 78, 986–992.

    PubMed  CAS  Google Scholar 

  71. Smith, D., Gao, G., Zhang, X., Wang, G., and Dou, Q. 2000. Regulation of tumor cell apoptotic sensitivity during the cell cycle (review). Int. J. Mol. Med. 6, 503–507.

    PubMed  CAS  Google Scholar 

  72. Sonneveld, P. 2000. Multidrug resistance in hematological malignancies. J. Intern. Med. 247, 521–534.

    PubMed  CAS  Google Scholar 

  73. Staunton, J., Slonim, D., Coller, H., et al. 2001. Chemosensitivity prediction by transcriptional profiling. Proc. Natl. Acad. Sci. USA 98, 10787–10792.

    Article  PubMed  CAS  Google Scholar 

  74. Bao, L., and Sun, Z. 2002. Identifying genes related to drug anticancer mechanisms using support vector machine. FEBS Lett. 521, 109–114.

    Article  PubMed  CAS  Google Scholar 

  75. McLeod, H. 2002. Individualized cancer therapy: molecular approaches to the prediction of tumor response. Expert Rev. Anticancer Ther. 2, 113–119.

    Article  PubMed  CAS  Google Scholar 

  76. Amundson, S., Myers, T., Scudiero, D., Kitada, S., Reed, J., and Fornace, A. 2000. An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res. 60, 6101–6110.

    PubMed  CAS  Google Scholar 

  77. Alizadeh, A., Eisen, M., and Dasvis, R. 2000. Distinct types of diffuse large B-cell lympoma identified by gene expression profiling. Nature 403, 503–511.

    Article  PubMed  CAS  Google Scholar 

  78. Kihara, C., Tsunoda, T., Tanaka, T., et al. Prediction of sensitivity of esophageal tumors to adjuvant chemotherapy by cDNA microarray analysis of gene-expression profiles. Cancer Res., 61, 6474–6479.

  79. Sotirious, C., Powles, T., Dowsett, M., et al. 2002. Gene expression profiles derived from fine needle aspiration correlate with response to systemic chemotherapy in breast cancer. Breast Cancer Res. 4, R3.

    Article  Google Scholar 

  80. Stein, W. D., Litman, T., Fojo, T., and Bates, S. E. 2004. A Serial Analysis of Gene Expression (SAGE) database analysis of chemosensitivity: comparing solid tumors with cell lines and comparing solid tumors from different tissue origins. Cancer Res. 64, 2805–2816.

    Article  PubMed  CAS  Google Scholar 

  81. Poland, J., Schadendorf, D., Lage, H., Schnolzer, M., Celis, J., and Siha, P. 2002. Study of therapy resistance in cancer cells with functional proteome analysis. Clin. Chem. Lab. Med. 40, 221–234.

    Article  PubMed  CAS  Google Scholar 

  82. Aschele, C., Debernardis, D., Casazza, S., et al. 1999. Immunohistochemical quantitation of thymidylate synthase expression in colorectal cancer metastases predicts for clinical outcome to fluorouracil-based chemotherapy. J. Clin. Oncol. 17, 1760–1770.

    PubMed  CAS  Google Scholar 

  83. Bachrach, U., and Wang, Y. 2003. In vitro chemosensitivity testin of hematological cancer patients: detection of ornithine decarboxylase. Rec Results Cancer Res. 161, 62–70.

    CAS  Google Scholar 

  84. Konecny, G., Fritz, M., Untch, M., et al. 2001. Her-2/neu overexpression and in vitro chemosensitivity to CMF and FEC in primary breast cancer. Breast Cancer Res. Treat. 69, 53–63.

    Article  PubMed  CAS  Google Scholar 

  85. Yang, Q., Sakurai, T., Yoshimura, G., et al. 2000. Overexpression of p27 protein in human breast cancer correlates with in vitro resistance to doxorubicin and mitomycin C. Anticancer Res. 20, 4319–4322.

    PubMed  CAS  Google Scholar 

  86. Yang, Q., Sakurai, T., Yoshimura, G., et al. 2000. Expression of Bcl-2 but not Bax or p53 correlates with in vitro resisatnce to a series of anticancer drugs in breast carcinoma. Breast Cancer Res. Treat. 61, 211–216.

    Article  PubMed  CAS  Google Scholar 

  87. Rozan, S., Vincent-Salomon, A., Zafrani, B., et al. 1998. No significant predictive value of c-erbB-2 or p53 expression regarding sensitivity to primary chemotherapy or radiotherapy in breast cancer. Int. J. Cancer 79, 27–33.

    Article  PubMed  CAS  Google Scholar 

  88. Ginestier, C., Charafe-Jauffret, E., Bertucci, F., et al. 2002. Distinct and complementary information provided by use of tissue and DNA microarrays in the study of breast tumor markers. Am. J. Pathol. 161, 1223–1233.

    PubMed  CAS  Google Scholar 

  89. Jones, M., Krutzsch, H., Shu, H., Zhao, Y., Liotta, L., Kohn, E., and Petricoin, E. R. 2002. Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. Proteomics 2, 76–84.

    Article  PubMed  CAS  Google Scholar 

  90. Schrag, D., Garewal, H. S., Burstein, H. J., Samson, D. J., Von Hoff, D. D., and Somerfield, M. R. 2004. American Society of Clinical Oncology Technology Assessment: chemotherapy sensitivity and resistance assays. J. Clin. Oncol. 22, 3631–3638.

    Article  PubMed  CAS  Google Scholar 

  91. Konecny, G., Untch, M., Slamon, D., et al. 2001. Drug interactions and cytotoxic effects of paclitaxel in combination withc arboplatin, epirubicin, gemcitabine, or vinorelbine in breast cancer cell lines and tumor samples. Breast Cancer Res. Treat. 67, 223–233.

    Article  PubMed  CAS  Google Scholar 

  92. Lopez, A., Pegram, M., Slamon, D., and Landaw, E. 1999. A model-based approach for assessing in vivo combination therapy interactions. Proc. Natl. Acad. Sci. USA 96, 13023–13028.

    Article  PubMed  CAS  Google Scholar 

  93. Heim, M., Eberhardt, W., Seeber, S., and Muller, M. 2000. Differential modulation of chemosensitivity to alkylkating agents and platinum compounds by DNA repair modulators in human lung cancer cell lines. J. Cancer Res. Clin. Oncol. 126, 198–204.

    Article  PubMed  CAS  Google Scholar 

  94. Kondratov, R., Komarov, P., Becker, Y., Ewenson, A., and Gudkov, A. 2001. Small molecules that dramatically alter multidrug resistance phenotype by modulating the substrate specificity of P-glycoprotein. Proc. Natl. Acad. Sci. USA 98, 14078–14083.

    Article  PubMed  CAS  Google Scholar 

  95. Henewisch-Becker, S. 1996. MDR1 reversal: criteria for clinical trials designed to overcome the multidrug resistance phenotype. Leukemia 10, S32-S38.

    Google Scholar 

  96. Levi, F., Giacchetti, S., Zidani, R., et al. 2001. Chremotherapy of colorectal cancer metastases. Hepatogastroenterology 48, 320–322.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalyn D. Blumenthal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blumenthal, R.D., Goldenberg, D.M. Methods and goals for the use of in vitro and in vivo chemosensitivity testing. Mol Biotechnol 35, 185–197 (2007). https://doi.org/10.1007/BF02686104

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02686104

Index Entries

Navigation