Skip to main content
Log in

Medullary Thyroid Cancer: Clinical Characteristics and New Insights into Therapeutic Strategies Targeting Tyrosine Kinases

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Medullary thyroid carcinoma (MTC) is a hyperplasia of thyroid C-cells, accounting for 5–10% of all thyroid cancers. MTCs may appear as sporadic or hereditary forms, and several molecules and signaling pathways have been found to function defectively in MTC cells. Tyrosine kinases are the most well-studied molecules that have abnormal function in these tumor cells. Due to their limited response, chemotherapeutic agents and radiation therapy are not effective in treating patients with advanced metastatic MTC. In the past decade, significant attention has been given to the utilization of multikinase inhibitors as targeted therapeutic agents for treating MTC patients, with the most promising results arising from the study of tyrosine kinase inhibitors, which generally bind to the ATP binding sites of these kinases. Two drugs—vandetanib and cabozantinib—are approved for the treatment of aggressive advanced MTC; however, the potential for toxicities and adverse effects of these agents on patient quality of life need to be considered against any therapeutic gain. According to recent data, it appears that inhibition of only one receptor or molecule in a pathway is not as effective as simultaneous inhibition of different pathways, indicating the need to use combination therapy. The main purpose of this review is to describe the clinical characteristics, molecular mechanisms, and current molecular and targeted therapeutic strategies active in clinical trials for advanced MTC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ball DW. Medullary thyroid carcinoma. Thyroid cancer. Berlin: Springer; 2000. p. 365–81.

    Google Scholar 

  2. Niccoli-Sire P, Conte-Devolx B (eds). Medullary thyroid carcinoma. Annales d’endocrinologie; 2007.

  3. Jaquet J. Ein fall von metastasierenden amyloidtumoren (lymphosarkom). Virchows Arch. 1906;185(2):251–68.

    Article  Google Scholar 

  4. Hazard JB, Hawk WA, Crile JRG. Medullary (solid) carcinoma of the thyroid—a clinicopathologic entity. J Clin Endocrinol Metab. 1959;19(1):152–61.

    Article  CAS  PubMed  Google Scholar 

  5. Schmid KW. Histopathology of C cells and medullary thyroid carcinoma. Medullary thyroid carcinoma. Berlin: Springer; 2015. p. 41–60.

    Book  Google Scholar 

  6. Williams E. Histogenesis of medullary carcinoma of the thyroid. J Clin Pathol. 1966;19(2):114–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bussolati G, Pearse A. Immunofluorescent localization of calcitonin in the ‘C’ cells of pig and dog thyroid. J Endocrinol. 1967;37(2):205.

    Article  CAS  PubMed  Google Scholar 

  8. Tashjian AH Jr, Melvin KE. Medullary carcinoma of the thyroid gland: studies of thyrocalcitonin in plasma and tumor extracts. N Engl J Med. 1968;279(6):279–83.

    Article  PubMed  Google Scholar 

  9. Melvin KE, Miller HH, Tashjian AH Jr. Early diagnosis of medullary carcinoma of the thyroid gland by means of calcitonin assay. N Engl J Med. 1971;285(20):1115–20.

    Article  CAS  PubMed  Google Scholar 

  10. Hu MI, Ying AK, Jimenez C. Update on medullary thyroid cancer. Endocrinol Metab Clin North Am. 2014;43(2):423–42.

    Article  PubMed  Google Scholar 

  11. Ernani V, Kumar M, Chen AY, Owonikoko TK. Systemic treatment and management approaches for medullary thyroid cancer. Cancer Treatm Rev. 2016;50:89–98.

    Article  Google Scholar 

  12. Pacini F, Castagna M, Cipri C, Schlumberger M. Medullary thyroid carcinoma. Clin Oncol. 2010;22(6):475–85.

    Article  CAS  Google Scholar 

  13. Sippel RS, Kunnimalaiyaan M, Chen H. Current management of medullary thyroid cancer. Oncologist. 2008;13(5):539–47.

    Article  PubMed  Google Scholar 

  14. Marquard J, Eng C. Multiple endocrine neoplasia type 2. GeneReviews. 2015.

  15. Moley JF. Medullary thyroid carcinoma. Curr Treatm Options Oncol. 2003;4(4):339–47.

    Article  Google Scholar 

  16. Sheikholeslami S, Yeganeh MZ, Rad LH, Ghadaksaz HG, Hedayati M. Haplotype Frequency of G691S/S904S in the RET proto-onco-gene in patients with medullary thyroid carcinoma. Iran J Publ Health. 2014;43(2):235.

    Google Scholar 

  17. Kebebew E, Ituarte PH, Siperstein AE, Duh QY, Clark OH. Medullary thyroid carcinoma. Cancer. 2000;88(5):1139–48.

    Article  CAS  PubMed  Google Scholar 

  18. Barbosa SLS, Rodien P, Leboulleux S, Niccoli-Sire P, Kraimps JL, Caron P, et al. Ectopic adrenocorticotropic hormone-syndrome in medullary carcinoma of the thyroid: a retrospective analysis and review of the literature. Thyroid. 2005;15(6):618–23.

    Article  PubMed  Google Scholar 

  19. Wohllk N, Schweizer H, Erlic Z, Schmid KW, Walz MK, Raue F, et al. Multiple endocrine neoplasia type 2. Best Pract Res Clin Endocrinol Metab. 2010;24(3):371–87.

    Article  CAS  PubMed  Google Scholar 

  20. Romei C, Mariotti S, Fugazzola L, Taccaliti A, Pacini F, Opocher G, et al. Multiple endocrine neoplasia type 2 syndromes (MEN 2): results from the ItaMEN network analysis on the prevalence of different genotypes and phenotypes. Eur J Endocrinol. 2010;163(2):301–8.

    Article  CAS  PubMed  Google Scholar 

  21. DeLellis R, Wolfe H, Gagel R, Feldman Z, Miller H, Gang D, et al. Adrenal medullary hyperplasia. A morphometric analysis in patients with familial medullary thyroid carcinoma. Am J Pathol. 1976;83(1):177.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Carney J, Sizemore G, Tyce G. Bilateral adrenal medullary hyperplasia in multiple endocrine neoplasia, type 2: the precursor of bilateral pheochromocytoma. Mayo Cli Proc. 1975;50(1):3–10.

    CAS  Google Scholar 

  23. Gagel RF, Tashjian AH Jr, Cummings T, Papathanasopoulos N, Kaplan MM, DeLellis RA, et al. The clinical outcome of prospective screening for multiple endocrine neoplasia type 2a. N Engl J Med. 1988;318(8):478–84.

    Article  CAS  PubMed  Google Scholar 

  24. Verdy M, Weber AM, Roy CC, Morin CL, Cadotte M, Brochu P. Hirschsprung’s disease in a family with multiple endocrine neoplasia type 2. J Pediatr Gastroenterol Nutr. 1982;1(4):603–8.

    Article  CAS  PubMed  Google Scholar 

  25. Carney J, Sizemore G, Hayles A. Multiple endocrine neoplasia, type 2b. Pathobiol Annu. 1977;8:105–53.

    Google Scholar 

  26. Leboulleux S, Travagli J, Caillou B, Laplanche A, Bidart J, Schlumberger M, et al. Medullary thyroid carcinoma as part of a multiple endocrine neoplasia type 2B syndrome. Cancer. 2002;94(1):44–50.

    Article  CAS  PubMed  Google Scholar 

  27. Nosé V. Familial thyroid cancer: a review. Modern Pathol. 2011;24:S19–33.

    Article  CAS  Google Scholar 

  28. Elisei R, Romei C, Cosci B, Agate L, Bottici V, Molinaro E, et al. RET genetic screening in patients with medullary thyroid cancer and their relatives: experience with 807 individuals at one center. J Clin Endocrinol Metab. 2007;92(12):4725–9.

    Article  CAS  PubMed  Google Scholar 

  29. Pasini B, Hofstra R, Yin L, Bocciardi R, Santamaria G, Grootscholten PM, et al. The physical map of the human RET proto-oncogene. Oncogene. 1995;11(9):1737–43.

    CAS  PubMed  Google Scholar 

  30. Anders J, Kjær S, Ibáñez CF. Molecular modeling of the extracellular domain of the RET receptor tyrosine kinase reveals multiple cadherin-like domains and a calcium-binding site. J Biol Chem. 2001;276(38):35808–17.

    Article  CAS  PubMed  Google Scholar 

  31. Tsui-Pierchala BA, Milbrandt J, Johnson EM. NGF utilizes c-Ret via a novel GFL-independent, inter-RTK signaling mechanism to maintain the trophic status of mature sympathetic neurons. Neuron. 2002;33(2):261–73.

    Article  CAS  PubMed  Google Scholar 

  32. Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions and therapeutic value. Nature Rev Neurosci. 2002;3(5):383–94.

    Article  CAS  Google Scholar 

  33. Ichihara M, Murakumo Y, Takahashi M. RET and neuroendocrine tumors. Cancer Lett. 2004;204(2):197–211.

    Article  CAS  PubMed  Google Scholar 

  34. Takahashi M, Ritz J, Cooper GM. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell. 1985;42(2):581–8.

    Article  CAS  PubMed  Google Scholar 

  35. Donis-Keller H, Dou S, Chi D, Carlson KM, Toshima K, Lairmore TC, et al. Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Human Mol Genet. 1993;2(7):851–6.

    Article  CAS  Google Scholar 

  36. Mulligan LM, Kwok J, Healey CS, Elsdon MJ, Eng C, Gardner E, et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature. 1993;363(6428):458–60.

    Article  CAS  PubMed  Google Scholar 

  37. Carlson KM, Dou S, Chi D, Scavarda N, Toshima K, Jackson CE, et al. Single missense mutation in the tyrosine kinase catalytic domain of the RET protooncogene is associated with multiple endocrine neoplasia type 2B. Proc Natl Acad Sci. 1994;91(4):1579–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eng C, SmIth DP, MullIgan LM, Nagal MA, Healey CS, Ponder MA, et al. Point mutation within the tyrosine kinase domain of the RET proto-oncogene in multiple endocrine neoplasia type 2B and related sporadic tumours. Human Mol Genet. 1994;3(2):237–41.

    Article  CAS  Google Scholar 

  39. Marsh DJ, Learoyd DL, Andrew SD, Krishnan L, Pojer R, Richardson AL, et al. Somatic mutations in the RET proto-oncogene in sporadic medullary thyroid carcinoma. Clin Endocrinol. 1996;44(3):249–57.

    Article  CAS  Google Scholar 

  40. Yeganeh MZ, Sheikholeslami S, Behbahani GD, Farashi S, Hedayati M. Skewed mutational spectrum of RET proto-oncogene Exon10 in Iranian patients with medullary thyroid carcinoma. Tumor Biol. 2015;36(7):5225–31.

    Article  CAS  Google Scholar 

  41. Schilling T, Bürck J, Sinn HP, Clemens A, Otto HF, Höppner W, et al. Prognostic value of codon 918 (ATG → ACG) RET proto-oncogene mutations in sporadic medullary thyroid carcinoma. Int J Cancer. 2001;95(1):62–6.

    Article  CAS  PubMed  Google Scholar 

  42. Elisei R, Cosci B, Romei C, Bottici V, Renzini G, Molinaro E, et al. Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab. 2008;93(3):682–7.

    Article  CAS  PubMed  Google Scholar 

  43. Moura M, Cavaco B, Pinto A, Domingues R, Santos J, Cid M, et al. Correlation of RET somatic mutations with clinicopathological features in sporadic medullary thyroid carcinomas. Br J Cancer. 2009;100(11):1777–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Santoro M, Melillo RM, Fusco A. RET/PTC activation in papillary thyroid carcinoma. Eur J Endocrinol Prize Lect Eur J Endocrinol. 2006;155(5):645–53.

    Article  CAS  Google Scholar 

  45. Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T, et al. KIF5B-RET fusions in lung adenocarcinoma. Nature Med. 2012;18(3):375–7.

    Article  CAS  PubMed  Google Scholar 

  46. Ballerini P, Struski S, Cresson C, Prade N, Toujani S, Deswarte C, et al. RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation. Leukemia. 2012;26(11):2384–9.

    Article  CAS  PubMed  Google Scholar 

  47. Coyle D, Friedmacher F, Puri P. The association between Hirschsprung’s disease and multiple endocrine neoplasia type 2a: a systematic review. Pediatr Surg Int. 2014;30(8):751–6.

    Article  PubMed  Google Scholar 

  48. Margraf RL, Crockett DK, Krautscheid PM, Seamons R, Calderon FR, Wittwer CT, et al. Multiple endocrine neoplasia type 2 RET protooncogene database: repository of MEN2-associated RET sequence variation and reference for genotype/phenotype correlations. Human Mutat. 2009;30(4):548–56.

    Article  CAS  Google Scholar 

  49. Terman BI, Dougher-Vermazen M, Carrion ME, Dimitrov D, Armellino DC, Gospodarowicz D, et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun. 1992;187(3):1579–86.

    Article  CAS  PubMed  Google Scholar 

  50. Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res. 2006;312(5):549–60.

    Article  CAS  PubMed  Google Scholar 

  51. Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358(19):2039–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rodríguez-Antona C, Pallares J, Montero-Conde C, Inglada-Pérez L, Castelblanco E, Landa I, et al. Overexpression and activation of EGFR and VEGFR2 in medullary thyroid carcinomas is related to metastasis. Endocr Relat Cancer. 2010;17(1):7–16.

    Article  PubMed  CAS  Google Scholar 

  53. Bunone G, Vigneri P, Mariani L, Butó S, Collini P, Pilotti S, et al. Expression of angiogenesis stimulators and inhibitors in human thyroid tumors and correlation with clinical pathological features. Am J Pathol. 1999;155(6):1967–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Capp C, Wajner SM, Siqueira DR, Brasil BA, Meurer L, Maia AL. Increased expression of vascular endothelial growth factor and its receptors, VEGFR-1 and VEGFR-2, in medullary thyroid carcinoma. Thyroid. 2010;20(8):863–71.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang H, Berezov A, Wang Q, Zhang G, Drebin J, Murali R, et al. ErbB receptors: from oncogenes to targeted cancer therapies. J Clin Investig. 2007;117(8):2051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res. 2003;284(1):31–53.

    Article  CAS  PubMed  Google Scholar 

  57. Holbro T, Civenni G, Hynes NE. The ErbB receptors and their role in cancer progression. Exp Cell Res. 2003;284(1):99–110.

    Article  CAS  PubMed  Google Scholar 

  58. Vlahovic G, Crawford J. Activation of tyrosine kinases in cancer. Oncologist. 2003;8(6):531–8.

    Article  CAS  PubMed  Google Scholar 

  59. Croyle M, Akeno N, Knauf JA, Fabbro D, Chen X, Baumgartner JE, et al. RET/PTC-induced cell growth is mediated in part by epidermal growth factor receptor (EGFR) activation: evidence for molecular and functional interactions between RET and EGFR. Cancer Res. 2008;68(11):4183–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bottaro DP, Rubin JS, Faletto DL, Chan A, Kmiecik TE, Woude GV, et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science. 1991;251(4995):802–4.

    Article  CAS  PubMed  Google Scholar 

  61. Corso S, Migliore C, Ghiso E, De Rosa G, Comoglio P, Giordano S. Silencing the MET oncogene leads to regression of experimental tumors and metastases. Oncogene. 2008;27(5):684–93.

    Article  CAS  PubMed  Google Scholar 

  62. Di Renzo M, Narsimhan R, Olivero M, Bretti S, Giordano S, Medico E, et al. Expression of the Met/HGF receptor in normal and neoplastic human tissues. Oncogene. 1991;6(11):1997–2003.

    PubMed  Google Scholar 

  63. Di Renzo MF, Olivero M, Giacomini A, Porte H, Chastre E, Mirossay L, et al. Overexpression and amplification of the met/HGF receptor gene during the progression of colorectal cancer. Clin Cancer Res. 1995;1(2):147–54.

    PubMed  Google Scholar 

  64. Di Renzo M, Olivero M, Serini G, Orlandi F, Pilotti S, Belfiore A, et al. Overexpression of the c-MET/HGF receptor in human thyroid carcinomas derived from the follicular epithelium. J Endocrinol Investig. 1995;18(2):134–9.

    Article  Google Scholar 

  65. Di Renzo MF, Olivero M, Katsaros D, Crepaldi T, Gaglia P, Zola P, et al. Overexpression of the Met/HGF receptor in ovarian cancer. Int J Cancer. 1994;58(5):658–62.

    Article  PubMed  Google Scholar 

  66. Ramirez R, Hsu D, Patel A, Fenton C, Dinauer C, Tuttle RM, et al. Over-expression of hepatocyte growth factor/scatter factor (HGF/SF) and the HGF/SF receptor (cMET) are associated with a high risk of metastasis and recurrence for children and young adults with papillary thyroid carcinoma. Clin Endocrinol. 2000;53(5):635–44.

    Article  CAS  Google Scholar 

  67. Prat M, Narsimhan RP, Crepaldi T, Rita Nicotra M, Natali PG, Comoglio PM. The receptor encoded by the human C-MET oncogene is expressed in hepatocytes, epithelial cells and solid tumors. Int J Cancer. 1991;49(3):323–8.

    Article  CAS  PubMed  Google Scholar 

  68. Liu C, Park M, Tsao M. Overexpression of c-met proto-oncogene but not epidermal growth factor receptor or c-erbB-2 in primary human colorectal carcinomas. Oncogene. 1992;7(1):181–5.

    CAS  PubMed  Google Scholar 

  69. Jeffers M, Schmidt L, Nakaigawa N, Webb CP, Weirich G, Kishida T, et al. Activating mutations for the met tyrosine kinase receptor in human cancer. Proc Natl Acad Sci. 1997;94(21):11445–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schmidt L, Duh F-M, Chen F, Kishida T, Glenn G, Choyke P, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nature Genet. 1997;16(1):68–73.

    Article  CAS  PubMed  Google Scholar 

  71. Papotti M, Olivero M, Volante M, Negro F, Prat M, Comoglio PM, et al. Expression of hepatocyte growth factor (HGF) and its receptor (MET) in medullary carcinoma of the thyroid. Endocr Pathol. 2000;11(1):19–30.

    Article  CAS  PubMed  Google Scholar 

  72. Wasenius V-M, Hemmer S, Karjalainen-Lindsberg M-L, Nupponen NN, Franssila K, Joensuu H. MET receptor tyrosine kinase sequence alterations in differentiated thyroid carcinoma. Am J Surg Pathol. 2005;29(4):544–9.

    Article  PubMed  Google Scholar 

  73. Cassinelli G, Favini E, Degl’Innocenti D, Salvi A, De Petro G, Pierotti MA, et al. RET/PTC1-driven neoplastic transformation and proinvasive phenotype of human thyrocytes involve Met induction and β-catenin nuclear translocation. Neoplasia. 2009;11(1):10–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ivan M, Bond JA, Prat M, Comoglio PM, Wynford-Thomas D. Activated ras and ret oncogenes induce over-expression of c-met (hepatocyte growth factor receptor) in human thyroid epithelial cells. Oncogene. 1997;14(20):2417–23.

    Article  CAS  PubMed  Google Scholar 

  75. Eswarakumar V, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16(2):139–49.

    Article  CAS  PubMed  Google Scholar 

  76. St. Bernard R, Zheng L, Liu W, Winer D, Asa SL, Ezzat S. Fibroblast growth factor receptors as molecular targets in thyroid carcinoma. Endocrinology. 2005;146(3):1145–53.

    Article  CAS  PubMed  Google Scholar 

  77. Ezzat S, Huang P, Dackiw A, Asa SL. Dual inhibition of RET and FGFR4 restrains medullary thyroid cancer cell growth. Clin Cancer Res. 2005;11(3):1336–41.

    CAS  PubMed  Google Scholar 

  78. Rajalingam K, Schreck R, Rapp UR, Albert Š. Ras oncogenes and their downstream targets. Biochimica et biophysica acta (BBA). Mol Cell Res. 2007;1773(8):1177–95.

    CAS  Google Scholar 

  79. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nature Rev Cancer. 2011;11(11):761–74.

    Article  CAS  Google Scholar 

  80. Prior IA, Lewis PD, Mattos C. A comprehensive survey of Ras mutations in cancer. Cancer Res. 2012;72(10):2457–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Moura MM, Cavaco BM, Leite V. RAS proto-oncogene in medullary thyroid carcinoma. Endocr Relat Cancer. 2015;22(5):R235–52.

    Article  CAS  PubMed  Google Scholar 

  82. Ciampi R, Mian C, Fugazzola L, Cosci B, Romei C, Barollo S, et al. Evidence of a low prevalence of RAS mutations in a large medullary thyroid cancer series. Thyroid. 2013;23(1):50–7.

    Article  CAS  PubMed  Google Scholar 

  83. Agrawal N, Jiao Y, Sausen M, Leary R, Bettegowda C, Roberts NJ, et al. Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. J Clin Endocrinol Metab. 2012;98(2):E364–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. D’Argenio V. Molecular alterations in human genetic diseases through next generation sequencing technologies [thesis]. European School of Molecular Medicine (SEMM) Universita’ Degli Studi Di Napoli Federico II; 2015.

  85. Nikiforova MN, Wald AI, Roy S, Durso MB, Nikiforov YE. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J Clin Endocrinol Metab. 2013;98(11):E1852–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moura MM, Cavaco BM, Pinto AE, Leite V. High prevalence of RAS mutations in RET-negative sporadic medullary thyroid carcinomas. J Clin Endocrinol Metab. 2011;96(5):E863–8.

    Article  CAS  PubMed  Google Scholar 

  87. Wei S, LiVolsi VA, Montone KT, Morrissette JJ, Baloch ZW. Detection of molecular alterations in medullary thyroid carcinoma using next-generation sequencing: an institutional experience. Endocr Pathol. 2016;27(4):359–62.

    Article  CAS  PubMed  Google Scholar 

  88. Simbolo M, Mian C, Barollo S, Fassan M, Mafficini A, Neves D, et al. High-throughput mutation profiling improves diagnostic stratification of sporadic medullary thyroid carcinomas. Virchows Arch. 2014;465(1):73–8.

    Article  CAS  PubMed  Google Scholar 

  89. Grubbs EG, Ng PK-S, Bui J, Busaidy NL, Chen K, Lee JE, et al. RET fusion as a novel driver of medullary thyroid carcinoma. J Clin Endocrinol Metab. 2015;100(3):788–93.

    Article  CAS  PubMed  Google Scholar 

  90. Ji JH, Oh YL, Hong M, Yun JW, Lee H-W, Kim D, et al. Identification of driving ALK fusion genes and genomic landscape of medullary thyroid cancer. PLoS Genet. 2015;11(8):e1005467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Vaclavikova E, Dvorakova S, Sykorova V, Vcelak J, Halkova T, Vlcek P, et al. Search for new candidate genes in RET mutation-negative families with hereditary medullary thyroid carcinoma using next generation sequencing. Endocr Abstr. 2015;37(OC6):5.

    Google Scholar 

  92. Holden S, Eckhardt S, Basser R, De Boer R, Rischin D, Green M, et al. Clinical evaluation of ZD6474, an orally active inhibitor of VEGF and EGF receptor signaling, in patients with solid, malignant tumors. Ann Oncol. 2005;16(8):1391–7.

    Article  CAS  PubMed  Google Scholar 

  93. Herbst RS, Heymach JV, O’Reilly MS, Onn A, Ryan AJ. Vandetanib (ZD6474): an orally available receptor tyrosine kinase inhibitor that selectively targets pathways critical for tumor growth and angiogenesis. Exp Opin Investig Drugs. 2007;16(2):239–49.

    Article  CAS  Google Scholar 

  94. Vitagliano D, De Falco V, Tamburrino A, Coluzzi S, Troncone G, Chiappetta G, et al. The tyrosine kinase inhibitor ZD6474 blocks proliferation of RET mutant medullary thyroid carcinoma cells. Endocr Relat Cancer. 2011;18(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  95. Gomez K, Varghese J, Jiménez C. Medullary thyroid carcinoma: molecular signaling pathways and emerging therapies. J Thyroid Res. 2011;2011:815826. doi:10.4061/2011/815826.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wells SA, Gosnell JE, Gagel RF, Moley J, Pfister D, Sosa JA, et al. Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Oncol. 2010;28(5):767–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wells SA, Robinson BG, Gagel RF, Dralle H, Fagin JA, Santoro M, et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol. 2012;30(2):134–41.

    Article  CAS  PubMed  Google Scholar 

  98. Degrauwe N, Sosa JA, Roman S, Deshpande HA. Vandetanib for the treatment of metastatic medullary thyroid cancer. Clin Med Insights Oncol. 2012;6:243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cooper MR, Yi SY, Alghamdi W, Shaheen DJ, Steinberg M. Vandetanib for the treatment of medullary thyroid carcinoma. Ann Pharmacother. 2014;48(3):387–94.

    Article  PubMed  CAS  Google Scholar 

  100. Fallahi P, Ferrari SM, Baldini E, Biricotti M, Ulisse S, Materazzi G, et al. The safety and efficacy of vandetanib in the treatment of progressive medullary thyroid cancer. Exp Rev Anticancer Ther. 2016;16(11):1109–18.

    Article  CAS  Google Scholar 

  101. Tsang VH, Robinson BG, Learoyd DL. The safety of vandetanib for the treatment of thyroid cancer. Exp Opin Drug Saf. 2016;15(8):1107–13.

    Article  CAS  Google Scholar 

  102. Eder JP, Woude GFV, Boerner SA, LoRusso PM. Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res. 2009;15(7):2207–14.

    Article  CAS  PubMed  Google Scholar 

  103. Hart CD, De Boer RH. Profile of cabozantinib and its potential in the treatment of advanced medullary thyroid cancer. Onco Targets Ther. 2013;6:1–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kurzrock R, Sherman SI, Ball DW, Forastiere AA, Cohen RB, Mehra R, et al. Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol. 2011;29(19):2660–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Elisei R, Schlumberger MJ, Müller SP, Schöffski P, Brose MS, Shah MH, et al. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol. 2013;31(29):3639–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nix NM, Braun K. Cabozantinib for the treatment of metastatic medullary thyroid carcinoma. J Adv Pract Oncol. 2014;5(1):47.

    PubMed  PubMed Central  Google Scholar 

  107. Krajewska J, Olczyk T, Jarzab B. Cabozantinib for the treatment of progressive metastatic medullary thyroid cancer. Exp Rev Clin Pharmacol. 2016;9(1):69–79.

    Article  CAS  Google Scholar 

  108. Colombo JR, Wein RO. Cabozantinib for progressive metastatic medullary thyroid cancer: a review. Ther Clin Risk Manag. 2014;10:395.

    PubMed  PubMed Central  Google Scholar 

  109. Sherman IS, Douglas SR, Jean EM. Medullary thyroid cancer: chemotherapy and immunotherapy. 2017. Available at: http://www.uptodate.com.

  110. Ocana A, Amir E, Seruga B, Pandiella A. Do we have to change the way targeted drugs are developed? J Clin Oncol. 2010;28(24):e420–1.

    Article  PubMed  Google Scholar 

  111. Hong D, Ye L, Gagel R, Chintala L, El Naggar AK, Wright J, et al. Medullary thyroid cancer: targeting the RET kinase pathway with sorafenib/tipifarnib. Mol Cancer Ther. 2008;7(5):1001–6.

    Article  CAS  PubMed  Google Scholar 

  112. Carlomagno F, Anaganti S, Guida T, Salvatore G, Troncone G, Wilhelm SM, et al. BAY 43-9006 inhibition of oncogenic RET mutants. J Natl Cancer Inst. 2006;98(5):326–34.

    Article  CAS  PubMed  Google Scholar 

  113. Strumberg D, Clark JW, Awada A, Moore MJ, Richly H, Hendlisz A, et al. Safety, pharmacokinetics, and preliminary antitumor activity of sorafenib: a review of four phase I trials in patients with advanced refractory solid tumors. Oncologist. 2007;12(4):426–37.

    Article  CAS  PubMed  Google Scholar 

  114. Koh YW, Shah MH, Agarwal K, McCarty SK, Koo BS, Brendel VJ, et al. Sorafenib and Mek inhibition is synergistic in medullary thyroid carcinoma in vitro. Endocr Relat Cancer. 2012;19(1):29–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lam ET, Ringel MD, Kloos RT, Prior TW, Knopp MV, Liang J, et al. Phase II clinical trial of sorafenib in metastatic medullary thyroid cancer. J Clin Oncol. 2010;28(14):2323–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ahmed M, Barbachano Y, Riddell A, Hickey J, Newbold KL, Viros A, et al. Analysis of the efficacy and toxicity of sorafenib in thyroid cancer: a phase II study in a UK based population. Eur J Endocrinol. 2011;165(2):315–22.

    Article  CAS  PubMed  Google Scholar 

  117. Izbicka E, Campos D, Carrizales G, Patnaik A. Biomarkers of anticancer activity of R115777 (Tipifarnib, Zarnestra™) in human breast cancer models in vitro. Anticancer Res. 2005;25(5):3215–23.

    CAS  PubMed  Google Scholar 

  118. Hong DS, Sebti SM, Newman RA, Blaskovich MA, Ye L, Gagel RF, et al. Phase I trial of a combination of the multikinase inhibitor sorafenib and the farnesyltransferase inhibitor tipifarnib in advanced malignancies. Clin Cancer Res. 2009;15(22):7061–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cabanillas M, Kurzrock R, Sherman S, Tsimberidou A, Waguespack S, Naing A, Busaidy N, Gagel R, Wright JJ, Hong DS. Phase I trial of combination sorafenib and tipifarnib: The experience in advanced differentiated thyroid cancer (DTC) and medullary thyroid cancer (MTC). J Clin Oncol. 2010;28(15_suppl):5586.

    Article  Google Scholar 

  120. Mena AC, Pulido EG, Guillen-Ponce C. Understanding the molecular-based mechanism of action of the tyrosine kinase inhibitor: sunitinib. Anticancer Drugs. 2010;21:S3–11.

    Article  CAS  PubMed  Google Scholar 

  121. Cohen EE, Needles BM, Cullen KJ, Wong SJ, Wade III JL, Ivy SP, Villaflor VM, Seiwert TY, Nichols K, Vokes EE. Phase 2 study of sunitinib in refractory thyroid cancer. J Clin Oncol. 2008;26(15_suppl):6025.

    Article  Google Scholar 

  122. De Souza JA, Busaidy N, Zimrin A, Seiwert TY, Villaflor VM, Poluru KB, Reddy PL, Nam J, Vokes EE, Cohen EE. Phase II trial of sunitinib in medullary thyroid cancer (MTC). J Clin Oncol. 2010;28(15_suppl):5504.

    Article  Google Scholar 

  123. Carr L, Goulart B, Martins R, Keith E, Kell E, Wallace S, et al. (eds). Phase II trial of continuous dosing of sunitinib in advanced, FDG-PET avid, medullary thyroid carcinoma (MTC) and well-differentiated thyroid cancer (WDTC). ASCO Annu Meet Proc.; 2009.

  124. Escudier B, Gore M. Axitinib for the management of metastatic renal cell carcinoma. Drugs R & D. 2011;11(2):113–26.

    Article  Google Scholar 

  125. Cohen EE, Rosen LS, Vokes EE, Kies MS, Forastiere AA, Worden FP, et al. Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. J Clin Oncol. 2008;26(29):4708–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Coxon A, Ziegler B, Kaufman S, Xu M, Wang H, Weishuhn D, et al. Antitumor activity of motesanib alone and in combination with cisplatin or docetaxel in multiple human non-small-cell lung cancer xenograft models. Mol Cancer. 2012;11(1):1.

    Article  CAS  Google Scholar 

  127. Coxon A, Bready J, Kaufman S, Estrada J, Osgood T, Canon J, et al. Anti-tumor activity of motesanib in a medullary thyroid cancer model. J Endocrinol Investig. 2012;35(2):181–90.

    CAS  Google Scholar 

  128. Wang Y-J, Kathawala RJ, Zhang Y-K, Patel A, Kumar P, Shukla S, et al. Motesanib (AMG706), a potent multikinase inhibitor, antagonizes multidrug resistance by inhibiting the efflux activity of the ABCB1. Biochem Pharmacol. 2014;90(4):367–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rosen LS, Kurzrock R, Mulay M, Van Vugt A, Purdom M, Ng C, et al. Safety, pharmacokinetics, and efficacy of AMG 706, an oral multikinase inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2007;25(17):2369–76.

    Article  CAS  PubMed  Google Scholar 

  130. Schlumberger MJ, Elisei R, Bastholt L, Wirth LJ, Martins RG, Locati LD, et al. Phase II study of safety and efficacy of motesanib in patients with progressive or symptomatic, advanced or metastatic medullary thyroid cancer. J Clin Oncol. 2009;27(23):3794–801.

    Article  CAS  PubMed  Google Scholar 

  131. de Groot J, Menacho IP, Schepers H, Drenth-Diephuis L, Osinga J, Plukker JTM, et al. Cellular effects of imatinib on medullary thyroid cancer cells harboring multiple endocrine neoplasia Type 2A and 2B associated RET mutations. Surgery. 2006;139(6):806–14.

    Article  PubMed  Google Scholar 

  132. De Groot J, Zonnenberg B, van Ufford-Mannesse PQ, De Vries M, Links T, Lips C, et al. A phase II trial of imatinib therapy for metastatic medullary thyroid carcinoma. J Clin Endocrinol Metab. 2007;92(9):3466–9.

    Article  PubMed  CAS  Google Scholar 

  133. Frank-Raue K, Fabel M, Delorme S, Haberkorn U, Raue F. Efficacy of imatinib mesylate in advanced medullary thyroid carcinoma. Eur J Endocrinol. 2007;157(2):215–20.

    Article  CAS  PubMed  Google Scholar 

  134. Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science. 2004;305(5687):1163–7.

    Article  CAS  PubMed  Google Scholar 

  135. Pennell NA, Daniels GH, Haddad RI, Ross DS, Evans T, Wirth LJ, et al. A phase II study of gefitinib in patients with advanced thyroid cancer. Thyroid. 2008;18(3):317–23.

    Article  CAS  PubMed  Google Scholar 

  136. Matsui J, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A, Asada M. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res. 2008;14(17):5459–65.

    Article  CAS  PubMed  Google Scholar 

  137. Schlumberger M, Jarzab B, Cabanillas ME, Robinson B, Pacini F, Ball DW, et al. A phase II trial of the multitargeted tyrosine kinase inhibitor lenvatinib (E7080) in advanced medullary thyroid cancer. Clin Cancer Res. 2016;22(1):44–53.

    Article  CAS  PubMed  Google Scholar 

  138. Takahashi S, Tahara M, Kiyota N, Yamazaki T, Chayahara N, Nakano K, et al. 995PD pHASE II study of lenvatinib (LEN), a multi-targeted tyrosine kinase inhibitor, in patients (pts) with all histologic subtypes of advanced thyroid cancer (differentiated, medullary and anaplastic). Ann Oncol. 2014;25(Suppl 4):iv343–4.

    Article  Google Scholar 

  139. Werner RA, Lückerath K, Schmid JS, Higuchi T, Kreissl MC, Grelle I, Reiners C, Buck AK, Lapa C. Thyroglobulin fluctuations in patients with iodine-refractory differentiated thyroid carcinoma on lenvatinib treatment–initial experience. Sci Rep. 2016;6:28081. doi:10.1038/srep28081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bible KC, Suman VJ, Molina JR, Smallridge RC, Maples WJ, Menefee ME, et al. A multicenter phase 2 trial of pazopanib in metastatic and progressive medullary thyroid carcinoma: MC057H. J Clin Endocrinol Metab. 2014;99(5):1687–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Javad Sharifi-Rad, Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran, for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Hedayati.

Ethics declarations

Conflict of interest

Sadegh Rajabi and Mehdi Hedayati have no conflict of interest.

Funding

The authors have no funding to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajabi, S., Hedayati, M. Medullary Thyroid Cancer: Clinical Characteristics and New Insights into Therapeutic Strategies Targeting Tyrosine Kinases. Mol Diagn Ther 21, 607–620 (2017). https://doi.org/10.1007/s40291-017-0289-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-017-0289-5

Navigation