Skip to main content

Advertisement

Log in

Acute Cardiorenal Syndrome in Heart Failure: from Dogmas to Advances

  • Heart Failure (HJ Eisen, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to summarize our current understanding and management strategies of acute cardiorenal syndrome (CRS).

Recent Findings

The definition of acute CRS remains debated, in part due to the lack of reliable insights into salt and water handling of the kidneys beyond impairment in glomerular filtration. Protocolized use of loop diuretics to ensure adequate delivery to their target of action, as well as segmental tubular blockade with adjunctive use of thiazide diuretics, acetazolamide, amiloride, or sodium-glucose transporter 2 (SGLT2) inhibitors, may result in more effective natriuresis in patients with acute CRS who exhibit diuretic resistance. Other strategies, such as modulating renal sodium avidity with the use of hypertonic saline, reduction of intra-abdominal pressure, or device-based salt and volume removal, are promising and warrant further investigation.

Summary

Acute CRS remains a significant contributor of morbidity and mortality for the acute heart failure population. New strategies have challenged current dogmas in our understanding of its pathophysiology, which may lead to potential new treatment approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Stengel A. Cardiorenal disease: the clinical determination of cardiovascular and renal responsibility, respectively, in its disturbance. JAMA. 1914;63(17):1463–9.

    Article  Google Scholar 

  2. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52(19):1527–39.

    Article  PubMed  Google Scholar 

  3. • Rangaswami J, Bhalla V, Blair JEA, Chang TI, Costa S, Lentine KL, et al. Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the American Heart Association. Circulation. 2019;139(16):e840–e78 Updated scientific statement with extensive summary of cardio-renal syndrome across the spectrum of heart failure and renal failure.

    Article  PubMed  Google Scholar 

  4. National Heart L, Institute B. NHLBI working group: cardio-renal connections in heart failure and cardiovascular disease, 2004. 2014.

    Google Scholar 

  5. Ljungman S, Laragh JH, Cody RJ. Role of the kidney in congestive heart failure. Relationship of cardiac index to kidney function. Drugs. 1990;39(Suppl 4):10–21 discussion 2-4.

    Article  PubMed  Google Scholar 

  6. • Mullens W, Damman K, Testani JM, Martens P, Mueller C, Lassus J, et al. Evaluation of kidney function throughout the heart failure trajectory - a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2020;22(4):584–603 Key position statement that provides guidance on how to effectively use diuretics in heart failure, outlining someone of the key advances including adequate diuretics dosing and prompt assessment of treatment responses with urine output or spot urine sodium.

    Article  PubMed  Google Scholar 

  7. Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. N Engl J Med. 1999;341(8):577–85.

    Article  CAS  PubMed  Google Scholar 

  8. Hanberg JS, Sury K, Wilson FP, Brisco MA, Ahmad T, Ter Maaten JM, et al. Reduced cardiac index is not the dominant driver of renal dysfunction in heart failure. J Am Coll Cardiol. 2016;67(19):2199–208.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53(7):589–96.

    Article  PubMed  PubMed Central  Google Scholar 

  10. • Gottlieb SS, Abraham W, Butler J, Forman DE, Loh E, Massie BM, et al. The prognostic importance of different definitions of worsening renal function in congestive heart failure. J Card Fail. 2002;8(3):136–41 Paper that established the definiton of “worsening renal function” as a metric for cardio-renal syndrome for the acute heart failure population.

    Article  PubMed  Google Scholar 

  11. Tang WH, Dupont M, Hernandez AF, Voors AA, Hsu AP, Felker GM, et al. Comparative assessment of short-term adverse events in acute heart failure with cystatin C and other estimates of renal function: results from the ASCEND-HF trial. JACC Heart Fail. 2015;3(1):40–9.

    Article  PubMed  Google Scholar 

  12. Dupont M, Wu Y, Hazen SL, Tang WH. Cystatin C identifies patients with stable chronic heart failure at increased risk for adverse cardiovascular events. Circ Heart Fail. 2012;5(5):602–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. • Testani JM, Chen J, McCauley BD, Kimmel SE, Shannon RP. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation. 2010;122(3):265–72 Landmark paper showing worsening renal function in the setting of effective diuresis does not lead to poor long-term outcomes in acute heart failure.

    Article  PubMed  PubMed Central  Google Scholar 

  14. McCallum W, Tighiouart H, Testani JM, Griffin M, Konstam MA, Udelson JE, et al. Acute kidney function declines in the context of decongestion in acute decompensated heart failure. JACC Heart Fail. 2020;8(7):537–47.

    Article  PubMed  Google Scholar 

  15. Metra M, Cotter G, Senger S, Edwards C, Cleland JG, Ponikowski P, et al. Prognostic significance of creatinine increases during an acute heart failure admission in patients with and without residual congestion: a post hoc analysis of the PROTECT data. Circ Heart Fail. 2018;11(5):e004644.

    Article  CAS  PubMed  Google Scholar 

  16. Metra M, Davison B, Bettari L, Sun H, Edwards C, Lazzarini V, et al. Is worsening renal function an ominous prognostic sign in patients with acute heart failure? The role of congestion and its interaction with renal function. Circ Heart Fail. 2012;5(1):54–62.

    Article  PubMed  Google Scholar 

  17. Brisco MA, Zile MR, Hanberg JS, Wilson FP, Parikh CR, Coca SG, et al. Relevance of changes in serum creatinine during a heart failure trial of decongestive strategies: insights from the DOSE trial. J Card Fail. 2016;22(10):753–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Massie BM, O’Connor CM, Metra M, Ponikowski P, Teerlink JR, Cotter G, et al. Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N Engl J Med. 2010;363(15):1419–28.

    Article  PubMed  Google Scholar 

  19. Kidney Disease: Improving global outcomes (KDIGO) Acute Kidney Injury WorkGroup. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl. 2012;2:1–138.

    Article  Google Scholar 

  20. Maisel AS, Mueller C, Fitzgerald R, Brikhan R, Hiestand BC, Iqbal N, et al. Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure: the NGAL EvaLuation along with B-type NaTriuretic peptide in acutely decompensated heart failure (GALLANT) trial. Eur J Heart Fail. 2011;13(8):846–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shrestha K, Shao Z, Singh D, Dupont M, Tang WH. Relation of systemic and urinary neutrophil gelatinase-associated lipocalin levels to different aspects of impaired renal function in patients with acute decompensated heart failure. Am J Cardiol. 2012;110(9):1329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dupont M, Shrestha K, Singh D, Awad A, Kovach C, Scarcipino M, et al. Lack of significant renal tubular injury despite acute kidney injury in acute decompensated heart failure. Eur J Heart Fail. 2012;14(6):597–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ahmad T, Jackson K, Rao VS, Tang WHW, Brisco-Bacik MA, Chen HH, et al. Worsening renal function in patients with acute heart failure undergoing aggressive diuresis is not associated with tubular injury. Circulation. 2018;137(19):2016–28.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rao VS, Ahmad T, Brisco-Bacik MA, Bonventre JV, Wilson FP, Siew ED, et al. Renal effects of intensive volume removal in heart failure patients with preexisting worsening renal function. Circ Heart Fail. 2019;12(6):e005552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. • Fallick C, Sobotka PA, Dunlap ME. Sympathetically mediated changes in capacitance: redistribution of the venous reservoir as a cause of decompensation. Circ Heart Fail. 2011;4(5):669–75 Important paper that outlined the concept of volume redistribution as underlying cause of congetion in some patients with heart failure.

    Article  PubMed  Google Scholar 

  26. Miller WL, Mullan BP. Understanding the heterogeneity in volume overload and fluid distribution in decompensated heart failure is key to optimal volume management: role for blood volume quantitation. JACC Heart Fail. 2014;2(3):298–305.

    Article  PubMed  Google Scholar 

  27. • Bart BA, Goldsmith SR, Lee KL, Givertz MM, O’Connor CM, Bull DA, et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med. 2012;367(24):2296–304 Landmark trial showing equivalence of stepwise pharmacologic therapy with ultrafiltration in patients with acute heart failure and worsening renal function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kitai T, Grodin JL, Kim YH, Tang WH. Impact of ultrafiltration on serum sodium homeostasis and its clinical implication in patients with acute heart failure, congestion, and worsening renal function. Circ Heart Fail. 2017;10(2):e003603.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Grodin JL, Carter S, Bart BA, Goldsmith SR, Drazner MH, Tang WHW. Direct comparison of ultrafiltration to pharmacological decongestion in heart failure: a per-protocol analysis of CARRESS-HF. Eur J Heart Fail. 2018;20(7):1148–56.

    Article  CAS  PubMed  Google Scholar 

  30. Blake WD, Wegria R. Effect of increased renal venous pressure on renal function. Am J Phys. 1949;157(1):1–13.

    Article  CAS  Google Scholar 

  31. Burnett JC, Knox FG. Renal interstitial pressure and sodium excretion during renal vein constriction. Am J Phys. 1980;238(4):F279–82.

    CAS  Google Scholar 

  32. Dilley JR, Corradi A, Arendshorst WJ. Glomerular ultrafiltration dynamics during increased renal venous pressure. Am J Phys. 1983;244(6):F650–8.

    CAS  Google Scholar 

  33. Doty JM, Saggi BH, Sugerman HJ, Blocher CR, Pin R, Fakhry I, et al. Effect of increased renal venous pressure on renal function. J Trauma. 1999;47(6):1000–3.

    Article  CAS  PubMed  Google Scholar 

  34. Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009;53(7):582–8.

    Article  PubMed  Google Scholar 

  35. Nijst P, Martens P, Dupont M, Tang WHW, Mullens W. Intrarenal flow alterations during transition from euvolemia to intravascular volume expansion in heart failure patients. JACC Heart Fail. 2017;5(9):672–81.

    Article  PubMed  Google Scholar 

  36. Nijst P, Verbrugge FH, Martens P, Dupont M, Tang WHW, Mullens W. Renal response to intravascular volume expansion in euvolemic heart failure patients with reduced ejection fraction: mechanistic insights and clinical implications. Int J Cardiol. 2017;243:318–25.

    Article  PubMed  Google Scholar 

  37. Verbrugge FH, Dupont M, Steels P, Grieten L, Malbrain M, Tang WH, et al. Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol. 2013;62(6):485–95.

    Article  PubMed  Google Scholar 

  38. Abu-Saleh N, Aronson D, Khamaisi M, Khoury EE, Awad H, Kabala A, et al. Increased intra-abdominal pressure induces acute kidney injury in an experimental model of congestive heart failure. J Card Fail. 2019;25(6):468–78.

    Article  PubMed  Google Scholar 

  39. • Mullens W, Abrahams Z, Skouri HN, Francis GS, Taylor DO, Starling RC, et al. Elevated intra-abdominal pressure in acute decompensated heart failure: a potential contributor to worsening renal function? J Am Coll Cardiol. 2008;51(3):300–6 Demonstration of intra-abdominal hypertension as contributor to acute cardio-renal syndrome.

    Article  PubMed  Google Scholar 

  40. Rapaport E, Weisbart MH, Levine M. The splanchnic blood volume in congestive heart failure. Circulation. 1958;18(4 Part 1):581–7.

    Article  CAS  PubMed  Google Scholar 

  41. Mullens W, Abrahams Z, Francis GS, Taylor DO, Starling RC, Tang WH. Prompt reduction in intra-abdominal pressure following large-volume mechanical fluid removal improves renal insufficiency in refractory decompensated heart failure. J Card Fail. 2008;14(6):508–14.

    Article  PubMed  Google Scholar 

  42. Fudim M, Ganesh A, Green C, Jones WS, Blazing MA, DeVore AD, et al. Splanchnic nerve block for decompensated chronic heart failure: splanchnic-HF. Eur Heart J. 2018;39(48):4255–6.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fudim M, Jones WS, Boortz-Marx RL, Ganesh A, Green CL, Hernandez AF, et al. Splanchnic nerve block for acute heart failure. Circulation. 2018;138(9):951–3.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hasselblad V, Gattis Stough W, Shah MR, Lokhnygina Y, O’Connor CM, Califf RM, et al. Relation between dose of loop diuretics and outcomes in a heart failure population: results of the ESCAPE trial. Eur J Heart Fail. 2007;9(10):1064–9.

    Article  CAS  PubMed  Google Scholar 

  45. Dupont M, Mullens W, Finucan M, Taylor DO, Starling RC, Tang WH. Determinants of dynamic changes in serum creatinine in acute decompensated heart failure: the importance of blood pressure reduction during treatment. Eur J Heart Fail. 2013;15(4):433–40.

    Article  CAS  PubMed  Google Scholar 

  46. Bart BA, Goldsmith SR, Lee KL, Givertz MM, O’Connor CM, Bull DA, et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med. 2012;367(24):2296–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Oster JR, Materson BJ. Renal and electrolyte complications of congestive heart failure and effects of therapy with angiotensin-converting enzyme inhibitors. Arch Intern Med. 1992;152(4):704–10.

    Article  CAS  PubMed  Google Scholar 

  48. Stason WB, Cannon PJ, Heinemann HO, Laragh JH. Furosemide. A clinical evaluation of its diuretic action. Circulation. 1966;34(5):910–20.

    Article  CAS  PubMed  Google Scholar 

  49. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147–239.

    Article  PubMed  Google Scholar 

  50. Felker GM, Ellison DH, Mullens W, Cox ZL, Testani JM. Diuretic therapy for patients with heart failure: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(10):1178–95.

    Article  CAS  PubMed  Google Scholar 

  51. • Felker GM, Lee KL, Bull DA, Redfield MM, Stevenson LW, Goldsmith SR, et al. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med. 2011;364(9):797–805 Landmark trial showing equivalence of high versus low-dose as well as bolus vs continuous dose of loop diuretics in acute heart failure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hanberg JS, Tang WHW, Wilson FP, Coca SG, Ahmad T, Brisco MA, et al. An exploratory analysis of the competing effects of aggressive decongestion and high-dose loop diuretic therapy in the DOSE trial. Int J Cardiol. 2017;241:277–82.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Singh D, Shrestha K, Testani JM, Verbrugge FH, Dupont M, Mullens W, et al. Insufficient natriuretic response to continuous intravenous furosemide is associated with poor long-term outcomes in acute decompensated heart failure. J Card Fail. 2014;20(6):392–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Testani JM, Brisco MA, Turner JM, Spatz ES, Bellumkonda L, Parikh CR, et al. Loop diuretic efficiency: a metric of diuretic responsiveness with prognostic importance in acute decompensated heart failure. Circ Heart Fail. 2014;7(2):261–70.

    Article  CAS  PubMed  Google Scholar 

  55. Ter Maaten JM, Valente MA, Damman K, Cleland JG, Givertz MM, Metra M, et al. Combining diuretic response and hemoconcentration to predict rehospitalization after admission for acute heart failure. Circ Heart Fail. 2016;9(6):e002845.

  56. Mullens W, Damman K, Harjola VP, Mebazaa A, Brunner-La Rocca HP, Martens P, et al. The use of diuretics in heart failure with congestion - a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2019;21(2):137–55.

    Article  PubMed  Google Scholar 

  57. Biegus J, Zymlinski R, Sokolski M, Todd J, Cotter G, Metra M, et al. Serial assessment of spot urine sodium predicts effectiveness of decongestion and outcome in patients with acute heart failure. Eur J Heart Fail. 2019;21(5):624–33.

    Article  CAS  PubMed  Google Scholar 

  58. Collins SP, Jenkins CA, Baughman A, Miller KF, Storrow AB, Han JH, et al. Early urine electrolyte patterns in patients with acute heart failure. ESC Heart Fail. 2019;6(1):80–8.

    Article  PubMed  Google Scholar 

  59. Damman K, Ter Maaten JM, Coster JE, Krikken JA, van Deursen VM, Krijnen HK, et al. Clinical importance of urinary sodium excretion in acute heart failure. Eur J Heart Fail. 2020; published online on February 22, 2020. https://doi.org/10.1002/ejhf.1753.

  60. Ferreira JP, Girerd N, Medeiros PB, Santos M, Carvalho HC, Bettencourt P, et al. Spot urine sodium excretion as prognostic marker in acutely decompensated heart failure: the spironolactone effect. Clin Res Cardiol. 2016;105(6):489–507.

    Article  CAS  PubMed  Google Scholar 

  61. Leiter L. Combinations of diuretics in the treatment of edema. Am Heart J. 1970;80(3):422–6.

    Article  CAS  PubMed  Google Scholar 

  62. Knauf H, Mutschler E. Sequential nephron blockade breaks resistance to diuretics in edematous states. J Cardiovasc Pharmacol. 1997;29(3):367–72.

    Article  CAS  PubMed  Google Scholar 

  63. Rao VS, Planavsky N, Hanberg JS, Ahmad T, Brisco-Bacik MA, Wilson FP, et al. Compensatory distal reabsorption drives diuretic resistance in human heart failure. J Am Soc Nephrol. 2017;28(11):3414–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Grodin JL, Stevens SR, de Las FL, Kiernan M, Birati EY, Gupta D, et al. Intensification of medication therapy for cardiorenal syndrome in acute decompensated heart failure. J Card Fail. 2016;22(1):26–32.

    Article  PubMed  Google Scholar 

  65. Brisco-Bacik MA, Ter Maaten JM, Houser SR, Vedage NA, Rao V, Ahmad T, et al. Outcomes associated with a strategy of adjuvant metolazone or high-dose loop diuretics in acute decompensated heart failure: a propensity analysis. J Am Heart Assoc. 2018;7(18):e009149.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cardinale M, Altshuler J, Testani JM. Efficacy of intravenous chlorothiazide for refractory acute decompensated heart failure unresponsive to adjunct metolazone. Pharmacotherapy. 2016;36(8):843–51.

    Article  CAS  PubMed  Google Scholar 

  67. Cox ZL, Hung R, Lenihan DJ, Testani JM. Diuretic strategies for loop diuretic resistance in acute heart failure: the 3T trial. JACC Heart Fail. 2020;8(3):157–68.

    Article  PubMed  Google Scholar 

  68. Shulenberger CE, Jiang A, Devabhakthuni S, Ivaturi V, Liu T, Reed BN. Efficacy and safety of intravenous chlorothiazide versus oral metolazone in patients with acute decompensated heart failure and loop diuretic resistance. Pharmacotherapy. 2016;36(8):852–60.

    Article  CAS  PubMed  Google Scholar 

  69. Konstam MA, Gheorghiade M, Burnett JC Jr, Grinfeld L, Maggioni AP, Swedberg K, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST outcome trial. JAMA. 2007;297(12):1319–31.

    Article  CAS  PubMed  Google Scholar 

  70. Verbrugge FH, Martens P, Ameloot K, Haemels V, Penders J, Dupont M, et al. Spironolactone to increase natriuresis in congestive heart failure with cardiorenal syndrome. Acta Cardiol. 2019;74(2):100–7.

    Article  PubMed  Google Scholar 

  71. Butler J, Anstrom KJ, Felker GM, Givertz MM, Kalogeropoulos AP, Konstam MA, et al. Efficacy and safety of spironolactone in acute heart failure: the ATHENA-HF randomized clinical trial. JAMA Cardiol. 2017;2(9):950–8.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Greene SJ, Felker GM, Giczewska A, Kalogeropoulos AP, Ambrosy AP, Chakraborty H, et al. Spironolactone in acute heart failure patients with renal dysfunction and risk factors for diuretic resistance: from the ATHENA-HF trial. Can J Cardiol. 2019;35(9):1097–105.

    Article  PubMed  Google Scholar 

  73. de Denus S, Leclair G, Dube MP, St-Jean I, Zada YF, Oussaid E, et al. Spironolactone metabolite concentrations in decompensated heart failure: insights from the ATHENA-HF trial. Eur J Heart Fail. 2020; published online on April 1, 2020. https://doi.org/10.1002/ejhf.1802.

  74. Krantz MJ, Ambardekar AV, Kaltenbach L, Hernandez AF, Heidenreich PA, Fonarow GC, et al. Patterns and predictors of evidence-based medication continuation among hospitalized heart failure patients (from get with the guidelines-heart failure). Am J Cardiol. 2011;107(12):1818–23.

    Article  PubMed  Google Scholar 

  75. Rubin AL, Spritz N, Mead AW, Herrmann RA, Braveman WS, Luckey EH. The use of L-lysine monomydrochloride in combination with mercurial diuretics in the treatment of refractory fluid retention. Circulation. 1960;21:332–6.

    Article  CAS  PubMed  Google Scholar 

  76. Grodin JL, Mullens W, Dupont M, Taylor DO, McKie PM, Starling RC, et al. Hemodynamic factors associated with serum chloride in ambulatory patients with advanced heart failure. Int J Cardiol. 2018;252:112–6.

    Article  PubMed  Google Scholar 

  77. Grodin JL, Simon J, Hachamovitch R, Wu Y, Jackson G, Halkar M, et al. Prognostic role of serum chloride levels in acute decompensated heart failure. J Am Coll Cardiol. 2015;66(6):659–66.

    Article  CAS  PubMed  Google Scholar 

  78. Grodin JL, Sun JL, Anstrom KJ, Chen HH, Starling RC, Testani JM, et al. Implications of serum chloride homeostasis in acute heart failure (from ROSE-AHF). Am J Cardiol. 2017;119(1):78–83.

    Article  CAS  PubMed  Google Scholar 

  79. Hanberg JS, Rao V, Ter Maaten JM, Laur O, Brisco MA, Perry Wilson F, et al. Hypochloremia and diuretic resistance in heart failure: mechanistic insights. Circ Heart Fail. 2016;9(8):e003180.

  80. Damman K, Tang WH, Felker GM, Lassus J, Zannad F, Krum H, et al. Current evidence on treatment of patients with chronic systolic heart failure and renal insufficiency: practical considerations from published data. J Am Coll Cardiol. 2014;63(9):853–71.

    Article  PubMed  Google Scholar 

  81. Testani JM, Kimmel SE, Dries DL, Coca SG. Prognostic importance of early worsening renal function after initiation of angiotensin-converting enzyme inhibitor therapy in patients with cardiac dysfunction. Circ Heart Fail. 2011;4(6):685–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Beldhuis IE, Streng KW, Ter Maaten JM, Voors AA, van der Meer P, Rossignol P, et al. Renin-angiotensin system inhibition, worsening renal function, and outcome in heart failure patients with reduced and preserved ejection fraction: a meta-analysis of published study data. Circ Heart Fail. 2017;10(2): e003588.

  83. Oliveros E, Oni ET, Shahzad A, Kluger AY, Lo KB, Rangaswami J, et al. Benefits and risks of continuing angiotensin-converting enzyme inhibitors, angiotensin II receptor antagonists, and mineralocorticoid receptor antagonists during hospitalizations for acute heart failure. Cardiorenal Med. 2020;10(2):69–84.

    Article  CAS  PubMed  Google Scholar 

  84. Vader JM, LaRue SJ, Stevens SR, Mentz RJ, DeVore AD, Lala A, et al. Timing and causes of readmission after acute heart failure hospitalization-insights from the heart failure network trials. J Card Fail. 2016;22(11):875–83.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gheorghiade M, Bohm M, Greene SJ, Fonarow GC, Lewis EF, Zannad F, et al. Effect of aliskiren on postdischarge mortality and heart failure readmissions among patients hospitalized for heart failure: the ASTRONAUT randomized trial. JAMA. 2013;309(11):1125–35.

    Article  CAS  PubMed  Google Scholar 

  86. Velazquez EJ, Morrow DA, DeVore AD, Duffy CI, Ambrosy AP, McCague K, et al. Angiotensin-Neprilysin inhibition in acute decompensated heart failure. N Engl J Med. 2019;380(6):539–48.

    Article  CAS  PubMed  Google Scholar 

  87. Imiela T, Budaj A. Acetazolamide as add-on diuretic therapy in exacerbations of chronic heart failure: a pilot study. Clin Drug Investig. 2017;37(12):1175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Verbrugge FH, Martens P, Ameloot K, Haemels V, Penders J, Dupont M, et al. Acetazolamide to increase natriuresis in congestive heart failure at high risk for diuretic resistance. Eur J Heart Fail. 2019;21:1415–22.

    Article  CAS  PubMed  Google Scholar 

  89. Nunez J, Heredia R, Paya A, Sanchis I, Del Prado S, Minana G, et al. Use of acetazolamide in the treatment of patients with refractory congestive heart failure. Cardiovasc Ther. 2018;36(6):e12465.

    Article  PubMed  CAS  Google Scholar 

  90. Kataoka H. Acetazolamide as a potent chloride-regaining diuretic: short- and long-term effects, and its pharmacologic role under the ‘chloride theory’ for heart failure pathophysiology. Heart Vessel. 2019;34(12):1952–60.

    Article  Google Scholar 

  91. Mullens W, Verbrugge FH, Nijst P, Martens P, Tartaglia K, Theunissen E, et al. Rationale and design of the ADVOR (acetazolamide in decompensated heart failure with volume overload) trial. Eur J Heart Fail. 2018;20(11):1591–600.

    Article  CAS  PubMed  Google Scholar 

  92. McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008.

    Article  CAS  PubMed  Google Scholar 

  93. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57.

    Article  CAS  PubMed  Google Scholar 

  94. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.

    Article  CAS  PubMed  Google Scholar 

  95. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.

    Article  CAS  PubMed  Google Scholar 

  96. Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. 2016;134(10):752–72.

    Article  CAS  PubMed  Google Scholar 

  97. Gilbert RE. SGLT2 inhibitors: beta blockers for the kidney? Lancet Diabetes Endocrinol. 2016;4(10):814.

    Article  PubMed  Google Scholar 

  98. Kimura Y, Kuno A, Tanno M, Sato T, Ohno K, Shibata S, et al. Canagliflozin, a sodium-glucose cotransporter 2 inhibitor, normalizes renal susceptibility to type 1 cardiorenal syndrome through reduction of renal oxidative stress in diabetic rats. J Diabetes Investig. 2019;10(4):933–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yang CC, Chen YT, Wallace CG, Chen KH, Cheng BC, Sung PH, et al. Early administration of empagliflozin preserved heart function in cardiorenal syndrome in rat. Biomed Pharmacother. 2019;109:658–70.

    Article  CAS  PubMed  Google Scholar 

  100. Damman K, Beusekamp JC, Boorsma EM, Swart HP, Smilde TDJ, Elvan A, et al. Randomized, double-blind, placebo-controlled, multicentre pilot study on the effects of empagliflozin on clinical outcomes in patients with acute decompensated heart failure (EMPA-RESPONSE-AHF). Eur J Heart Fail. 2020;22(4):713–22.

    Article  CAS  PubMed  Google Scholar 

  101. Kambara T, Shibata R, Osanai H, Nakashima Y, Asano H, Murohara T, et al. Importance of sodium-glucose cotransporter 2 inhibitor use in diabetic patients with acute heart failure. Ther Adv Cardiovasc Dis. 2019;13:1753944719894509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Griffin M, Riello R, Rao VS, Ivey-Miranda J, Fleming J, Maulion C, et al. Sodium glucose cotransporter 2 inhibitors as diuretic adjuvants in acute decompensated heart failure: a case series. ESC Heart Fail. 2020; published online on May 31, 2020. https://doi.org/10.1002/ehf2.12759.

  103. Griffin M, Rao VS, Ivey-Miranda J, Fleming J, Mahoney D, Maulion C, et al. Empagliflozin in heart failure: diuretic and cardio-renal effects. Circulation. 2020 published online on May 15, 2020. https://doi.org/10.1161/CIRCULATIONAHA.120.045691.

  104. Kataoka H, Yoshida Y. Enhancement of the serum chloride concentration by administration of sodium–glucose cotransporter-2 inhibitor and its mechanisms and clinical significance in type 2 diabetic patients: a pilot study. Diabetol Metab Syndr. 2020;12:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mullens W, Verbrugge FH, Nijst P, Tang WHW. Renal sodium avidity in heart failure: from pathophysiology to treatment strategies. Eur Heart J. 2017;38(24):1872–82.

    Article  CAS  PubMed  Google Scholar 

  106. Paterna S, Fasullo S, Parrinello G, Cannizzaro S, Basile I, Vitrano G, et al. Short-term effects of hypertonic saline solution in acute heart failure and long-term effects of a moderate sodium restriction in patients with compensated heart failure with New York Heart Association class III (Class C) (SMAC-HF Study). Am J Med Sci. 2011;342(1):27–37.

    Article  PubMed  Google Scholar 

  107. Issa VS, Bacal F, Mangini S, Carneiro RM, Azevedo CH, Chizzola PR, et al. Hypertonic saline solution for renal failure prevention in patients with decompensated heart failure. Arq Bras Cardiol. 2007;89(4):251–5.

    Article  CAS  PubMed  Google Scholar 

  108. Gandhi S, Mosleh W, Myers RB. Hypertonic saline with furosemide for the treatment of acute congestive heart failure: a systematic review and meta-analysis. Int J Cardiol. 2014;173(2):139–45.

    Article  PubMed  Google Scholar 

  109. Morisawa D, Hirotani S, Oboshi M, Sugahara M, Fukui M, Ando T, et al. Combination of hypertonic saline and low-dose furosemide is an effective treatment for refractory congestive heart failure with hyponatremia. J Cardiol Cases. 2014;9(5):179–82.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Lafreniere G, Beliveau P, Begin JY, Simonyan D, Cote S, Gaudreault V, et al. Effects of hypertonic saline solution on body weight and serum creatinine in patients with acute decompensated heart failure. World J Cardiol. 2017;9(8):685–92.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Engelmeier RS, Le TT, Kamalay SE, Utecht KN, Nikstad TP, Kaliebe JW, et al. Radomized trial of high dose furosemide-hypertonic saline in acute decompensated heart failure with advanced renal disease. J Am Coll Cardiol. 2019;59(13 Supplement):E958.

    Google Scholar 

  112. Griffin M, Soufer A, Goljo E, Colna M, Rao VS, Jeon S, et al. Real world use of hypertonic saline in refractory acute decompensated Heart failure: a U.S. center’s experience. JACC Heart Fail. 2020;8(3):199–208.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Biegus J, Zymlinski R, Siwolowski P, Testani J, Szachniewicz J, Tycinska A, et al. Controlled decongestion by Reprieve therapy in acute heart failure: results of the TARGET-1 and TARGET-2 studies. Eur J Heart Fail. 2019;21(9):1079–87.

    Article  CAS  PubMed  Google Scholar 

  114. Rao VS, Turner JM, Griffin M, Mahoney D, Asher J, Jeon S, et al. First-in-human experience with peritoneal direct sodium removal using a zero-sodium solution: a new candidate therapy for volume overload. Circulation. 2020;141(13):1043–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Feld Y, Hanani N, Costanzo MR. Hydrostatic pressure gradient ultrafiltration device: a novel approach for extracellular fluid removal. J Heart Lung Transplant. 2018;37(6):794–6.

    Article  PubMed  Google Scholar 

  116. Kapur NK, Karas RH, Newman S, Jorde L, Chabrashvili T, Annamalai S, et al. First-in-human experience with occlusion of the superior vena cava to reduce cardiac filling pressures in congestive heart failure. Catheter Cardiovasc Interv. 2019;93(7):1205–10.

    PubMed  PubMed Central  Google Scholar 

  117. Vora AN, Schuyler Jones W, DeVore AD, Ebner A, Clifton W, Patel MR. First-in-human experience with Aortix intraaortic pump. Catheter Cardiovasc Interv. 2019;93(3):428–33.

    Article  PubMed  Google Scholar 

  118. Dierckx R, Vanderheyden M, Heggermont W, Goethals M, Verstreken S, Bartunek J. Treatment of diuretic resistance with a novel percutaneous blood flow regulator: concept and initial experience. J Card Fail. 2019;25(11):932–4.

    Article  PubMed  Google Scholar 

  119. Regamey J, Barras N, Rusca M, Hullin R. A role for the Reitan catheter pump for percutaneous cardiac circulatory support of patients presenting acute congestive heart failure with low output and renal dysfunction? Futur Cardiol. 2020;16(3):159–64.

    Article  CAS  Google Scholar 

  120. Rosenblum H, Kapur NK, Abraham WT, Udelson J, Itkin M, Uriel N, et al. Conceptual considerations for device-based therapy in acute decompensated heart failure: DRI2P2S. Circ Heart Fail. 2020;13(4):e006731.

    Article  PubMed  Google Scholar 

Download references

Funding

Dr. Tang is partially supported by grants from the National Institutes of Health and the Office of Dietary Supplements (R01HL103931, R01DK106000, R01HL126827).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Wilson Tang.

Ethics declarations

Conflict of Interest

Alan Kiang declares that he has no conflict of interest.

W.H. Wilson Tang is a consultant for Sequana Medical A.G., has received honorarium from Springer Nature for authorship/editorship, and has received personal fees from the American Board of Internal Medicine.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W.H.W., Kiang, A. Acute Cardiorenal Syndrome in Heart Failure: from Dogmas to Advances. Curr Cardiol Rep 22, 143 (2020). https://doi.org/10.1007/s11886-020-01384-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-020-01384-0

Keywords

Navigation