Skip to main content

Advertisement

Log in

Fibroblast Growth Factor Signaling in the Vasculature

  • Vascular Biology (T Hla, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Despite their discovery as angiogenic factors and mitogens for endothelial cells more than 30 years ago, much remains to be determined about the role of fibroblast growth factors (FGFs) and their receptors in vascular development, homeostasis, and disease. In vitro studies show that members of the FGF family stimulate growth, migration, and sprouting of endothelial cells, and growth, migration, and phenotypic plasticity of vascular smooth muscle cells. Recent studies have revealed important roles for FGFs and their receptors in the regulation of endothelial cell sprouting and vascular homeostasis in vivo. Furthermore, recent work has revealed roles for FGFs in atherosclerosis, vascular calcification, and vascular dysfunction. The large number of FGFs and their receptors expressed in endothelial and vascular smooth muscle cells complicates these studies. In this review, we summarize recent studies in which new and unanticipated roles for FGFs and their receptors in the vasculature have been revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Beenken A, Mohammadi M. The fgf family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009;8(3):235–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Antoine M, Wirz W, Tag CG, Mavituna M, Emans N, Korff T, et al. Expression pattern of fibroblast growth factors (fgfs), their receptors and antagonists in primary endothelial cells and vascular smooth muscle cells. Growth Factors. 2005;23(2):87–95.

    Article  CAS  PubMed  Google Scholar 

  3. Friesel RE, Maciag T. Molecular mechanisms of angiogenesis: fibroblast growth factor signal transduction. FASEB J Off Publ Fed Am Soc Exp Biol. 1995;9(10):919–25.

    CAS  Google Scholar 

  4. Johnson DE, Williams LT. Structural and functional diversity in the fgf receptor multigene family. Adv Cancer Res. 1993;60:1–41.

    Article  CAS  PubMed  Google Scholar 

  5. Ornitz DM. Fgfs, heparan sulfate and fgfrs: complex interactions essential for development. Bioessays. 2000;22(2):108–12.

    Article  CAS  PubMed  Google Scholar 

  6. Spivak-Kroizman T, Lemmon MA, Dikic I, Ladbury JE, Pinchasi D, Huang J, et al. Heparin-induced oligomerization of fgf molecules is responsible for fgf receptor dimerization, activation, and cell proliferation. Cell. 1994;79(6):1015–24.

    Article  CAS  PubMed  Google Scholar 

  7. Murakami M, Elfenbein A, Simons M. Non-canonical fibroblast growth factor signalling in angiogenesis. Cardiovasc Res. 2008;78(2):223–31.

    Article  CAS  PubMed  Google Scholar 

  8. Rosengart TK, Johnson WV, Friesel R, Clark R, Maciag T. Heparin protects heparin-binding growth factor-i from proteolytic inactivation in vitro. Biochem Biophys Res Commun. 1988;152(1):432–40.

    Article  CAS  PubMed  Google Scholar 

  9. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem. 2006;281(10):6120–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, et al. Klotho converts canonical fgf receptor into a specific receptor for fgf23. Nature. 2006;444(7120):770–4.

    Article  CAS  PubMed  Google Scholar 

  11. Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV, et al. Tissue-specific expression of betaklotho and fibroblast growth factor (fgf) receptor isoforms determines metabolic activity of fgf19 and fgf21. J Biol Chem. 2007;282(37):26687–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Goetz R, Beenken A, Ibrahimi OA, Kalinina J, Olsen SK, Eliseenkova AV, et al. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol. 2007;27(9):3417–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Goetz R, Ohnishi M, Kir S, Kurosu H, Wang L, Pastor J, et al. Conversion of a paracrine fibroblast growth factor into an endocrine fibroblast growth factor. J Biol Chem. 2012;287(34):29134–46. This paper reveals the importance of the heparin-binding domain in FGFs in determining paracrine HSPG-depending signaling versus endocrine Klotho dependent signaling.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Murakami M, Simons M. Fibroblast growth factor regulation of neovascularization. Curr Opin Hematol. 2008;15(3):215–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Murakami M, Nguyen LT, Zhang ZW, Moodie KL, Carmeliet P, Stan RV, et al. The fgf system has a key role in regulating vascular integrity. J Clin Invest. 2008;118(10):3355–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Murakami M, Simons M. Regulation of vascular integrity. J Mol Med. 2009;87(6):571–82.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Simons M. Angiogenesis: where do we stand now? Circulation. 2005;111(12):1556–66.

    Article  PubMed  Google Scholar 

  18. Molin D, Post MJ. Therapeutic angiogenesis in the heart: protect and serve. Curr Opin Pharmacol. 2007;7(2):158–63.

    Article  CAS  PubMed  Google Scholar 

  19. Goetz R, Mohammadi M. Exploring mechanisms of fgf signalling through the lens of structural biology. Nat Rev Mol Cell Biol. 2013;14(3):166–80. This is a very comprehensive and up to date review on molecular mechanisms of FGF signaling.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Burgess WH, Dionne CA, Kaplow J, Mudd R, Friesel R, Zilberstein A, et al. Characterization and cdna cloning of phospholipase c-gamma, a major substrate for heparin-binding growth factor 1 (acidic fibroblast growth factor)-activated tyrosine kinase. Mol Cell Biol. 1990;10(9):4770–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Mohammadi M, Dionne CA, Li W, Li N, Spivak T, Honegger AM, et al. Point mutation in fgf receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis. Nature. 1992;358(6388):681–4.

    Article  CAS  PubMed  Google Scholar 

  22. Kouhara H, Hadari YR, Spivak-Kroizman T, Schilling J, Bar-Sagi D, Lax I, et al. A lipid-anchored grb2-binding protein that links fgf-receptor activation to the ras/mapk signaling pathway. Cell. 1997;89(5):693–702.

    Article  CAS  PubMed  Google Scholar 

  23. Burgar HR, Burns HD, Elsden JL, Lalioti MD, Heath JK. Association of the signaling adaptor frs2 with fibroblast growth factor receptor 1 (fgfr1) is mediated by alternative splicing of the juxtamembrane domain. J Biol Chem. 2002;277(6):4018–23.

    Article  CAS  PubMed  Google Scholar 

  24. Hadari YR, Gotoh N, Kouhara H, Lax I, Schlessinger J. Critical role for the docking-protein frs2 alpha in fgf receptor-mediated signal transduction pathways. Proc Natl Acad Sci U S A. 2001;98(15):8578–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Ong SH, Guy GR, Hadari YR, Laks S, Gotoh N, Schlessinger J, et al. Frs2 proteins recruit intracellular signaling pathways by binding to diverse targets on fibroblast growth factor and nerve growth factor receptors. Mol Cell Biol. 2000;20(3):979–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ong SH, Hadari YR, Gotoh N, Guy GR, Schlessinger J, Lax I. Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins. Proc Natl Acad Sci U S A. 2001;98(11):6074–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Li X, Brunton VG, Burgar HR, Wheldon LM, Heath JK. Frs2-dependent src activation is required for fibroblast growth factor receptor-induced phosphorylation of sprouty and suppression of erk activity. J Cell Sci. 2004;117(Pt 25):6007–17.

    Article  CAS  PubMed  Google Scholar 

  28. Liu J, Huang C, Zhan X. Src is required for cell migration and shape changes induced by fibroblast growth factor 1. Oncogene. 1999;18(48):6700–6.

    Article  CAS  PubMed  Google Scholar 

  29. Rusnati M, Coltrini D, Caccia P, Dell’Era P, Zoppetti G, Oreste P, et al. Distinct role of 2-o-, n-, and 6-o-sulfate groups of heparin in the formation of the ternary complex with basic fibroblast growth factor and soluble fgf receptor-1. Biochem Biophys Res Commun. 1994;203(1):450–8.

    Article  CAS  PubMed  Google Scholar 

  30. Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991;64(4):841–8.

    Article  CAS  PubMed  Google Scholar 

  31. Steinfeld R, Van Den Berghe H, David G. Stimulation of fibroblast growth factor receptor-1 occupancy and signaling by cell surface-associated syndecans and glypican. J Cell Biol. 1996;133(2):405–16.

    Article  CAS  PubMed  Google Scholar 

  32. Chittenden TW, Claes F, Lanahan AA, Autiero M, Palac RT, Tkachenko EV, et al. Selective regulation of arterial branching morphogenesis by synectin. Dev Cell. 2006;10(6):783–95.

    Article  CAS  PubMed  Google Scholar 

  33. Mori S, Wu CY, Yamaji S, Saegusa J, Shi B, Ma Z, et al. Direct binding of integrin alphavbeta3 to fgf1 plays a role in fgf1 signaling. J Biol Chem. 2008;283(26):18066–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 2005;16(2):159–78.

    Article  CAS  PubMed  Google Scholar 

  35. Sanchez-Heras E, Howell FV, Williams G, Doherty P. The fibroblast growth factor receptor acid box is essential for interactions with n-cadherin and all of the major isoforms of neural cell adhesion molecule. J Biol Chem. 2006;281(46):35208–16.

    Article  CAS  PubMed  Google Scholar 

  36. Miller DL, Ortega S, Bashayan O, Basch R, Basilico C. Compensation by fibroblast growth factor 1 (fgf1) does not account for the mild phenotypic defects observed in fgf2 null mice. Mol Cell Biol. 2000;20(6):2260–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Zhou M, Sutliff RL, Paul RJ, Lorenz JN, Hoying JB, Haudenschild CC, et al. Fibroblast growth factor 2 control of vascular tone. Nat Med. 1998;4(2):201–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Ortega S, Ittmann M, Tsang SH, Ehrlich M, Basilico C. Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc Natl Acad Sci U S A. 1998;95(10):5672–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Giordano FJ, Ping P, McKirnan MD, Nozaki S, DeMaria AN, Dillmann WH, et al. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med. 1996;2(5):534–9.

    Article  CAS  PubMed  Google Scholar 

  40. Hebert JM, Rosenquist T, Gotz J, Martin GR. Fgf5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell. 1994;78(6):1017–25.

    Article  CAS  PubMed  Google Scholar 

  41. Maretzky T, Evers A, Zhou W, Swendeman SL, Wong PM, Rafii S, et al. Migration of growth factor-stimulated epithelial and endothelial cells depends on egfr transactivation by adam17. Nat Commun. 2011;2:229.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Guo L, Degenstein L, Fuchs E. Keratinocyte growth factor is required for hair development but not for wound healing. Genes Dev. 1996;10(2):165–75.

    Article  CAS  PubMed  Google Scholar 

  43. Brown CB, Wenning JM, Lu MM, Epstein DJ, Meyers EN, Epstein JA. Cre-mediated excision of fgf8 in the tbx1 expression domain reveals a critical role for fgf8 in cardiovascular development in the mouse. Dev Biol. 2004;267(1):190–202.

    Article  CAS  PubMed  Google Scholar 

  44. Antoine M, Wirz W, Tag CG, Gressner AM, Wycislo M, Muller R, et al. Fibroblast growth factor 16 and 18 are expressed in human cardiovascular tissues and induce on endothelial cells migration but not proliferation. Biochem Biophys Res Commun. 2006;346(1):224–33.

    Article  CAS  PubMed  Google Scholar 

  45. Lu SY, Sheikh F, Sheppard PC, Fresnoza A, Duckworth ML, Detillieux KA, et al. Fgf-16 is required for embryonic heart development. Biochem Biophys Res Commun. 2008;373(2):270–4.

    Article  CAS  PubMed  Google Scholar 

  46. Liu Z, Lavine KJ, Hung IH, Ornitz DM. Fgf18 is required for early chondrocyte proliferation, hypertrophy and vascular invasion of the growth plate. Dev Biol. 2007;302(1):80–91.

    Article  CAS  PubMed  Google Scholar 

  47. Usui H, Shibayama M, Ohbayashi N, Konishi M, Takada S, Itoh N. Fgf18 is required for embryonic lung alveolar development. Biochem Biophys Res Commun. 2004;322(3):887–92.

    Article  CAS  PubMed  Google Scholar 

  48. Deng CX, Wynshaw-Boris A, Shen MM, Daugherty C, Ornitz DM, Leder P. Murine fgfr-1 is required for early postimplantation growth and axial organization. Genes Dev. 1994;8(24):3045–57.

    Article  CAS  PubMed  Google Scholar 

  49. Oladipupo SS, Smith C, Santeford A, Park C, Sene A, Wiley LA, et al. Endothelial cell fgf signaling is required for injury response but not for vascular homeostasis. Proc Natl Acad Sci U S A. 2014;111(37):13379–84. This paper demonstrates that FGFR1 and FGFR2 are dispensible for vascular development and homeostasis but required for angiogenesis in the contect of wound healing.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Arman E, Haffner-Krausz R, Chen Y, Heath JK, Lonai P. Targeted disruption of fibroblast growth factor (fgf) receptor 2 suggests a role for fgf signaling in pregastrulation mammalian development. Proc Natl Acad Sci U S A. 1998;95(9):5082–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet. 1996;12(4):390–7.

    Article  CAS  PubMed  Google Scholar 

  52. Gerber SD, Steinberg F, Beyeler M, Villiger PM, Trueb B. The murine fgfrl1 receptor is essential for the development of the metanephric kidney. Dev Biol. 2009;335(1):106–19.

    Article  CAS  PubMed  Google Scholar 

  53. Lim K, Lu TS, Molostvov G, Lee C, Lam FT, Zehnder D, et al. Vascular klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation. 2012;125(18):2243–55. This paper provides compelling evidence that Klotho plays a protective role in the vasculature in vivo in mouse models and human in vascular tissue.

    Article  CAS  PubMed  Google Scholar 

  54. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45–51.

    Article  CAS  PubMed  Google Scholar 

  55. Ikesue M, Matsui Y, Ohta D, Danzaki K, Ito K, Kanayama M, et al. Syndecan-4 deficiency limits neointimal formation after vascular injury by regulating vascular smooth muscle cell proliferation and vascular progenitor cell mobilization. Arterioscler Thromb Vasc Biol. 2011;31(5):1066–74.

    Article  CAS  PubMed  Google Scholar 

  56. Matsui Y, Ikesue M, Danzaki K, Morimoto J, Sato M, Tanaka S, et al. Syndecan-4 prevents cardiac rupture and dysfunction after myocardial infarction. Circ Res. 2011;108(11):1328–39.

    Article  CAS  PubMed  Google Scholar 

  57. Impagnatiello MA, Weitzer S, Gannon G, Compagni A, Cotten M, Christofori G. Mammalian sprouty-1 and −2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J Cell Biol. 2001;152(5):1087–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Lee S, Bui Nguyen TM, Kovalenko D, Adhikari N, Grindle S, Polster SP, et al. Sprouty1 inhibits angiogenesis in association with up-regulation of p21 and p27. Mol Cell Biochem. 2010;338(1–2):255–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Yang X, Gong Y, Tang Y, Li H, He Q, Gower L, et al. Spry1 and spry4 differentially regulate human aortic smooth muscle cell phenotype via akt/foxo/myocardin signaling. PLoS One. 2013;8(3):e58746.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, et al. Sprouty1 is a critical regulator of gdnf/ret-mediated kidney induction. Dev Cell. 2005;8(2):229–39.

    Article  CAS  PubMed  Google Scholar 

  61. Yang X, Gong Y, Friesel R. Spry1 is expressed in hemangioblasts and negatively regulates primitive hematopoiesis and endothelial cell function. PLoS One. 2011;6(4):e18374.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Taniguchi K, Ayada T, Ichiyama K, Kohno R, Yonemitsu Y, Minami Y, et al. Sprouty2 and sprouty4 are essential for embryonic morphogenesis and regulation of fgf signaling. Biochem Biophys Res Commun. 2007;352(4):896–902.

    Article  CAS  PubMed  Google Scholar 

  63. Lee SH, Schloss DJ, Jarvis L, Krasnow MA, Swain JL. Inhibition of angiogenesis by a mouse sprouty protein. J Biol Chem. 2001;276(6):4128–33.

    Article  CAS  PubMed  Google Scholar 

  64. Taniguchi K, Sasaki K, Watari K, Yasukawa H, Imaizumi T, Ayada T, et al. Suppression of sproutys has a therapeutic effect for a mouse model of ischemia by enhancing angiogenesis. PLoS One. 2009;4(5):e5467.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Kovalenko D, Yang X, Nadeau RJ, Harkins LK, Friesel R. Sef inhibits fibroblast growth factor signaling by inhibiting fgfr1 tyrosine phosphorylation and subsequent erk activation. J Biol Chem. 2003;278(16):14087–91.

    Article  CAS  PubMed  Google Scholar 

  66. He Q, Yang X, Gong Y, Kovalenko D, Canalis E, Rosen CJ, et al. Deficiency of sef is associated with increased postnatal cortical bone mass by regulating runx2 activity. J Bone Miner Res Off J Am Soc Bone Miner Res. 2014;29(5):1217–31.

    Article  CAS  Google Scholar 

  67. Cross MJ, Claesson-Welsh L. Fgf and vegf function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci. 2001;22(4):201–7.

    Article  CAS  PubMed  Google Scholar 

  68. Murakami M, Nguyen LT, Hatanaka K, Schachterle W, Chen PY, Zhuang ZW, et al. Fgf-dependent regulation of vegf receptor 2 expression in mice. J Clin Invest. 2011;121(7):2668–78. This paper provides in vivo evidence for the regulation of VEGFR signaling by FGF.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. De Smet F, Tembuyser B, Lenard A, Claes F, Zhang J, Michielsen C, et al. Fibroblast growth factor signaling affects vascular outgrowth and is required for the maintenance of blood vessel integrity. Chem Biol. 2014;21(10):1310–7. This paper uses an allostearic inhibitor of FGFR to probe the role of FGF signaling in vascular function in a zebrafish model.

    Article  PubMed  Google Scholar 

  70. Cabrita MA, Christofori G. Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis. 2008;11(1):53–62.

    Article  CAS  PubMed  Google Scholar 

  71. Edwin F, Anderson K, Ying C, Patel TB. Intermolecular interactions of sprouty proteins and their implications in development and disease. Mol Pharmacol. 2009;76(4):679–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Zhang C, Chaturvedi D, Jaggar L, Magnuson D, Lee JM, Patel TB. Regulation of vascular smooth muscle cell proliferation and migration by human sprouty 2. Arterioscler Thromb Vasc Biol. 2005;25(3):533–8.

    Article  CAS  PubMed  Google Scholar 

  73. Furthauer M, Lin W, Ang SL, Thisse B, Thisse C. Sef is a feedback-induced antagonist of ras/mapk-mediated fgf signalling. Nat Cell Biol. 2002;4(2):170–4.

    Article  CAS  PubMed  Google Scholar 

  74. Tsang M, Friesel R, Kudoh T, Dawid IB. Identification of sef, a novel modulator of fgf signalling. Nat Cell Biol. 2002;4(2):165–9.

    Article  CAS  PubMed  Google Scholar 

  75. Yang RB, Ng CK, Wasserman SM, Komuves LG, Gerritsen ME, Topper JN. A novel interleukin-17 receptor-like protein identified in human umbilical vein endothelial cells antagonizes basic fibroblast growth factor-induced signaling. J Biol Chem. 2003;278(35):33232–8.

    Article  CAS  PubMed  Google Scholar 

  76. Kovalenko D, Yang X, Chen PY, Nadeau RJ, Zubanova O, Pigeon K, et al. A role for extracellular and transmembrane domains of sef in sef-mediated inhibition of fgf signaling. Cell Signal. 2006;18(11):1958–66.

    Article  CAS  PubMed  Google Scholar 

  77. Abraira VE, Hyun N, Tucker AF, Coling DE, Brown MC, Lu C, et al. Changes in sef levels influence auditory brainstem development and function. J Neurosci. 2007;27(16):4273–82.

    Article  CAS  PubMed  Google Scholar 

  78. Hatanaka K, Lanahan AA, Murakami M, Simons M. Fibroblast growth factor signaling potentiates ve-cadherin stability at adherens junctions by regulating shp2. PLoS One. 2012;7(5):e37600.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685–95.

    Article  CAS  PubMed  Google Scholar 

  80. Brogi E, Winkles JA, Underwood R, Clinton SK, Alberts GF, Libby P. Distinct patterns of expression of fibroblast growth factors and their receptors in human atheroma and nonatherosclerotic arteries. Association of acidic fgf with plaque microvessels and macrophages. J Clin Invest. 1993;92(5):2408–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Lindner V, Reidy MA. Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor. Proc Natl Acad Sci U S A. 1991;88(9):3739–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Luo W, Liu A, Chen Y, Lim HM, Marshall-Neff J, Black JH, et al. Inhibition of accelerated graft arteriosclerosis by gene transfer of soluble fibroblast growth factor receptor-1 in rat aortic transplants. Arterioscler Thromb Vasc Biol. 2004;24(6):1081–6.

    Article  CAS  PubMed  Google Scholar 

  83. Raj T, Kanellakis P, Pomilio G, Jennings G, Bobik A, Agrotis A. Inhibition of fibroblast growth factor receptor signaling attenuates atherosclerosis in apolipoprotein e-deficient mice. Arterioscler Thromb Vasc Biol. 2006;26(8):1845–51.

    Article  CAS  PubMed  Google Scholar 

  84. Che J, Okigaki M, Takahashi T, Katsume A, Adachi Y, Yamaguchi S, et al. Endothelial fgf receptor signaling accelerates atherosclerosis. Am J Physiol Heart Circ Physiol. 2011;300(1):H154–61. This paper shows that increased FGFR signaling in ECs leads to increased paracrine signaling to VSMC in ApoE deficient mice and enhanced development of atherosclerosis.

    Article  CAS  PubMed  Google Scholar 

  85. Dol-Gleizes F, Delesque-Touchard N, Mares AM, Nestor AL, Schaeffer P, Bono F. A new synthetic fgf receptor antagonist inhibits arteriosclerosis in a mouse vein graft model and atherosclerosis in apolipoprotein e-deficient mice. PLoS One. 2013;8(11):e80027.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Chen PY, Qin L, Barnes C, Charisse K, Yi T, Zhang X, et al. Fgf regulates tgf-beta signaling and endothelial-to-mesenchymal transition via control of let-7 mirna expression. Cell Rep. 2012;2(6):1684–96. This paper shows that reduced FGF signaling in endothelium leads to a reduction in let-7 with a corrsponding increase in TGFβ signaling and endothelial dysfunction.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Chen PY, Qin L, Tellides G, Simons M. Fibroblast growth factor receptor 1 is a key inhibitor of tgfbeta signaling in the endothelium. Sci Signal. 2014;7(344):ra90. This paper provides additional evidence that FGFR signaling suppresses TGFβ signaling in the endothelial cell and inhibits Endo-MT.

    Article  PubMed  Google Scholar 

  88. Towler DA. Vascular calcification: it’s all the rage! Arterioscler Thromb Vasc Biol. 2011;31(2):237–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Scialla JJ, Wolf M. Roles of phosphate and fibroblast growth factor 23 in cardiovascular disease. Nat Rev Nephrol. 2014;10(5):268–78. This comprehensive review critically evaluated the role and the conflicting data on FGF-23 in vascular disease.

    Article  CAS  PubMed  Google Scholar 

  90. Graham G, Blaha MJ, Budoff MJ, Rivera JJ, Agatston A, Raggi P, et al. Impact of coronary artery calcification on all-cause mortality in individuals with and without hypertension. Atherosclerosis. 2012;225(2):432–7.

    Article  CAS  PubMed  Google Scholar 

  91. Towler DA, Demer LL. Thematic series on the pathobiology of vascular calcification: an introduction. Circ Res. 2011;108(11):1378–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Pardali E, Ten Dijke P. Tgfbeta signaling and cardiovascular diseases. Int J Biol Sci. 2012;8(2):195–213.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Liu Y, Shanahan CM. Signalling pathways and vascular calcification. Front Biosci. 2011;16:1302–14.

    Article  CAS  Google Scholar 

  94. Cheng SL, Shao JS, Behrmann A, Krchma K, Towler DA. Dkk1 and msx2-wnt7b signaling reciprocally regulate the endothelial-mesenchymal transition in aortic endothelial cells. Arterioscler Thromb Vasc Biol. 2013;33(7):1679–89.

    Article  CAS  PubMed  Google Scholar 

  95. Nakahara T, Sato H, Shimizu T, Tanaka T, Matsui H, Kawai-Kowase K, et al. Fibroblast growth factor-2 induces osteogenic differentiation through a runx2 activation in vascular smooth muscle cells. Biochem Biophys Res Commun. 2010;394(2):243–8.

    Article  CAS  PubMed  Google Scholar 

  96. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, et al. Targeted ablation of fgf23 demonstrates an essential physiological role of fgf23 in phosphate and vitamin d metabolism. J Clin Invest. 2004;113(4):561–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Jono S, McKee MD, Murry CE, Shioi A, Nishizawa Y, Mori K, et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ Res. 2000;87(7):E10–7.

    Article  CAS  PubMed  Google Scholar 

  98. El-Abbadi MM, Pai AS, Leaf EM, Yang HY, Bartley BA, Quan KK, et al. Phosphate feeding induces arterial medial calcification in uremic mice: role of serum phosphorus, fibroblast growth factor-23, and osteopontin. Kidney Int. 2009;75(12):1297–307.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Ohnishi M, Razzaque MS. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. FASEB J Off Publ Fed Am Soc Exp Biol. 2010;24(9):3562–71.

    CAS  Google Scholar 

  100. Shalhoub V, Shatzen EM, Ward SC, Davis J, Stevens J, Bi V, et al. Fgf23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J Clin Invest. 2012;122(7):2543–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors apologize to our many colleagues whose work could not be cited here due to space limitations. This work was supported in part by grants NIH P30 GM103392 (to RF), R01 HL109652 (to LL), AHA GRNT20460045 (to CV), R01 DK078161 (to LO). We also acknowledge the generous support of Maine Medical Center Research Institute.

Compliance with Ethics Guidelines

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Friesel.

Additional information

This article is part of the Topical Collection on Vascular Biology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Liaw, L., Prudovsky, I. et al. Fibroblast Growth Factor Signaling in the Vasculature. Curr Atheroscler Rep 17, 31 (2015). https://doi.org/10.1007/s11883-015-0509-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-015-0509-6

Keywords

Navigation