Skip to main content
Log in

Sprouty1 inhibits angiogenesis in association with up-regulation of p21 and p27

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Sprouty1 (Spry1) is a conserved antagonist of FGF signaling. The goal of this study was to further explore the downstream mechanisms governing Spry1 inhibition of endothelial cell proliferation. Up-regulation of Spry1 in HUVECs inhibited tube formation on Matrigel (n = 6, P < 0.001). This was associated with decreased proliferation as measured by BrdU incorporation (n = 6, P < 0.001) and increased protein expression of the cyclin-dependent kinase inhibitor 1A (CDKN1A), p21 and cyclin-dependent kinase inhibitor 1B (CDKN1B), p27. A transcriptional analysis using a targeted human angiogenesis array following up-regulation of Spry1 demonstrated a >2-fold increase in an anti-angiogenic factor, serpin peptidase inhibitor, clad F (Serpinf1), and a >2-fold decrease in pro-angiogenic factors fms-related tyrosine kinase 1 (FLT1), angiopoietin2 (Ang-2), and placental growth factor (PGF) (n = 2). To define upstream mechanisms that may regulate endogenous Spry1, we performed a search for responsive elements upstream of the promoter region. This search resulted in the identification of multiple degenerate hypoxia responsive elements. Exposure to hypoxia resulted in a significant increase in Spry1 expression (n = 8, P < 0.01). These findings shed new light on downstream signaling pathways associated with Spry1 anti-proliferative responses, and provide new evidence that hypoxia stimulates Spry1 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow MA (1998) Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92:253–263. doi:10.1016/S0092-8674(00)80919-8

    Article  CAS  PubMed  Google Scholar 

  2. Lim J, Wong ES, Ong SH, Yusoff P, Low BC, Guy GR (2000) Sprouty proteins are targeted to membrane ruffles upon growth factor receptor tyrosine kinase activation. Identification of a novel translocation domain. J Biol Chem 275:32837–32845. doi:10.1074/jbc.M002156200

    Article  CAS  PubMed  Google Scholar 

  3. Impagnatiello MA, Weizter S, Gannon G, Compagni A, Cotten M, Christofori G (2001) Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J Cell Biol 152:1087–1098. doi:10.1083/jcb.152.5.1087

    Article  CAS  PubMed  Google Scholar 

  4. Lee SH, Schloss DJ, Jarvis L, Krasnow MA, Swain JL (2001) Inhibition of angiogenesis by a mouse sprouty protein. J Biol Chem 276:4128–4133. doi:10.1074/jbc.M006922200

    Article  CAS  PubMed  Google Scholar 

  5. Balla J, Jacob HS, Balla G, Nath K, Eaton JW, Vercellotti GM (1993) Endothelial-cell heme uptake from heme proteins: induction of sensitization and desensitization to oxidant damage. Proc Natl Acad Sci USA 90:9285–9289

    Article  CAS  PubMed  Google Scholar 

  6. Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins Identification by morphologic and immunologic criteria. J Clin Invest 52:2745–2756

    Article  CAS  PubMed  Google Scholar 

  7. Anderson RD, Haskell RE, Xia H, Roessler BJ, Davidson BL (2000) A simple method for the rapid generation of recombinant adenovirus vectors. Gene Ther 7:1034–1038

    Article  CAS  PubMed  Google Scholar 

  8. Hardy S, Kitamura M, Harris-Stansil T, Dai Y, Phipps ML (1997) Construction of adenovirus vectors through Cre-lox recombination. J Virol 71:1842–1849

    CAS  PubMed  Google Scholar 

  9. Wild R, Ramakrishnan S, Sedgewick J, Griffioen AW (2000) Quantitative assessment of angiogenesis and tumor vessel architecture by computer-assisted digital image analysis: effects of VEGF-toxin conjugate on tumor microvessel density. Microvasc Res 59:368–376. doi:10.1006/mvre.1999.2233

    Article  CAS  PubMed  Google Scholar 

  10. Fermin DR, Barac A, Lee S, Polster SP, Hannenhalli S, Bergemann TL, Grindle S, Dyke DB, Pagani F, Miller LW, Tan S, Remedios C, Cappola TP, Margulies KB, Hall JL (2008) Sex and age dimorphism of myocardial gene expression in nonischemic human heart failure. Circ Cardiovasc Genet 1:117–125. doi:10.1161/CIRCGENETICS.108.802652

    Article  CAS  PubMed  Google Scholar 

  11. Wang X, Xiao Y, Mou Y, Zhao Y, Blankesteijn WM, Hall JL (2002) A role for the beta-catenin/T-cell factor signaling cascade in vascular remodeling. Circ Res 90:340–347. doi:10.1161/hh0302.104466

    Article  CAS  PubMed  Google Scholar 

  12. Hall JL, Wang X, Van A, Zhao Y, Gibbons GH (2001) Overexpression of Ref-1 inhibits hypoxia and tumor necrosis factor-induced endothelial cell apoptosis through nuclear factor-kappab-independent and -dependent pathways. Circ Res 88:1247–1253. doi:10.1161/hh1201.091796

    Article  CAS  PubMed  Google Scholar 

  13. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816. doi:10.1016/0092-8674(93)90499-G

    Article  CAS  PubMed  Google Scholar 

  14. Martin A, Odajima J, Hunt SL, Dubus P, Ortega S, Malumbres M, Barbacid M (2005) Cdk2 is dispensable for cell cycle inhibition and tumor suppression mediated by p27(Kip1) and p21(Cip1). Cancer Cell 7:591–598. doi:10.1016/j.ccr.2005.05.006

    Article  CAS  PubMed  Google Scholar 

  15. Tammela T, Enholm B, Alitalo K, Paavonen K (2005) The biology of vascular endothelial growth factors. Cardiovasc Res 65:550–563. doi:10.1016/j.cardiores.2004.12.002

    Article  CAS  PubMed  Google Scholar 

  16. Beckers J, Herrmann F, Rieger S, Drobyshev AL, Horsch M, Hrabé de Angelis M, Seliger B (2005) Identification and validation of novel ERBB2 (HER2, NEU) targets including genes involved in angiogenesis. Int J Cancer 114:590–597. doi:10.1002/ijc.20798

    Article  CAS  PubMed  Google Scholar 

  17. Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70. doi:10.1038/376066a0

    Article  CAS  PubMed  Google Scholar 

  18. Hiratsuka S, Maru Y, Okada A, Seiki M, Noda T, Shibuya M (2001) Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res 61:1207–1213

    CAS  PubMed  Google Scholar 

  19. de Alvaro C, Martinez N, Rojas JM, Lorenzo M (2005) Sprouty-2 overexpression in C2C12 cells confers myogenic differentiation properties in the presence of FGF2. Mol Biol Cell 16:4454–4461. doi:10.1091/mbc.E05-05-0419

    Article  PubMed  Google Scholar 

  20. Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, Keshert E (1998) Role of HIF-1 alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490. doi:10.1038/28867

    Article  CAS  PubMed  Google Scholar 

  21. Gardner LB, Li Q, Park MS, Flanagan WM, Semenza GL, Dang CV (2001) Hypoxia inhibits G1/S transition through regulation of p27 expression. J Biol Chem 276:7919–7926. doi:10.1074/jbc.M010189200

    Article  CAS  PubMed  Google Scholar 

  22. Goda N, Ryan HE, Khadivi B, McNulty W, Rickert RC, Johnson RS (2003) Hypoxia-inducible factor 1 alpha is essential for cell cycle arrest during hypoxia. Mol Cell Biol 23:359–369. doi:10.1128/MCB.23.1.359-369.2003

    Article  CAS  PubMed  Google Scholar 

  23. Hall JL (2008) Discovery of an intricate balance. Gene transcription, cell cycle, and apoptosis. Circ Res 102:395–397. doi:10.1161/CIRCRESAHA.108.172098

    Article  CAS  PubMed  Google Scholar 

  24. Yurkova N, Shaw J, Blackie K, Weidman D, Jayas R, Flynn B, Kirshenbaum LA (2008) The cell cycle factor E2F-1 activates Bnip3 and the intrinsic death pathway in ventricular myocytes. Circ Res 102:472–479. doi:10.1161/CIRCRESAHA.107.164731

    Article  CAS  PubMed  Google Scholar 

  25. Ding W, Bellusci S, Shi W, Warburton D (2003) Functional analysis of the human Sprouty2 gene promoter. Gene 322:175–185. doi:10.1016/j.gene.2003.09.004

    Article  CAS  PubMed  Google Scholar 

  26. Ding W, Bellusci S, Shi W, Warburton D (2004) Genomic structure and promoter characterization of the human Sprouty4 gene, a novel regulator of lung morphogenesis. Am J Physiol Lung Cell Mol Physiol 287:L52–L59. doi:10.1152/ajplung.00430.2003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant-in-aid from the American Heart Association (JH, 06555827) and NIH grants RO1 HL65301 and P20 RR15555 to RF. We thank Dr. Vercellotti’s lab at the University of Minnesota for providing HUVECs, Dr. Clohisy’s lab at the University of Minnesota for help with resources and Jenny Springsteen and the facilities staff under her direction in the Lillehei Heart Institute, and Ken Stern for his help in the preparation of this manuscript. Finally, we thank Dr. Lorrie Kirshenbaum at the University of Manitoba for his helpful discussions with this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Hall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Nguyen, T.M.B., Kovalenko, D. et al. Sprouty1 inhibits angiogenesis in association with up-regulation of p21 and p27. Mol Cell Biochem 338, 255–261 (2010). https://doi.org/10.1007/s11010-009-0359-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0359-z

Keywords

Navigation