Skip to main content

Role of Transforming Growth Factor Beta in Angiogenesis

  • Chapter
  • First Online:
Biochemical Basis and Therapeutic Implications of Angiogenesis

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 6))

Abstract

Transforming growth factor beta (TGFβ) is a pleiotropic factor that plays pivotal roles in both vasculogenesis and angiogenesis and thus is indispensable for development and homeostasis of the vascular system. TGFβ drives vascular responses via its binding to a TGFβ receptor complex formed by type I and type II receptors, as well as type III co-receptors present on both endothelial and mural cells. Signaling by these receptors is context-dependent and tightly regulated, particularly on cultured endothelial cells, where TGFβ can either promote or suppress endothelial migration, proliferation, permeability, and sprouting. These, together with evidence obtained from knockout animals for different TGFβ receptor types, and genetic studies in humans linking mutations in TGFβ signaling components to cardiovascular syndromes, suggest that TGFβ is a central mediator of angiogenesis, where it may play contrasting roles depending on the stage of the process. This review presents an overview of knowledge accumulated to date on TGFβ’s role in angiogenesis as well as vascular biology and vascular disease and discusses potential applications of this knowledge to the treatment of angiogenesis-dependent diseases such as cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moustakas A, Heldin CH (2009) The regulation of TGFbeta signal transduction. Development 136:3699–3714

    PubMed  CAS  Google Scholar 

  2. Gordon KJ, Blobe GC (2008) Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta 1782:197–228

    PubMed  CAS  Google Scholar 

  3. Li C, Guo B, Ding S et al (2003) TNF alpha down-regulates CD105 expression in vascular endothelial cells: a comparative study with TGF beta 1. Anticancer Res 23:1189–1196

    PubMed  CAS  Google Scholar 

  4. Dobaczewski M, Chen W, Frangogiannis NG (2011) Transforming growth factor (TGF)-beta signaling in cardiac remodeling. J Mol Cell Cardiol 51:600–606

    PubMed  CAS  Google Scholar 

  5. Worthington JJ, Klementowicz JE, Travis MA (2011) TGFbeta: a sleeping giant awoken by integrins. Trends Biochem Sci 36:47–54

    PubMed  CAS  Google Scholar 

  6. Patil AS, Sable RB, Kothari RM (2011) An update on transforming growth factor-beta (TGF-­beta): sources, types, functions and clinical applicability for cartilage/bone healing. J Cell Physiol 226:3094–3103

    PubMed  CAS  Google Scholar 

  7. Wahl SM, Wen J, Moutsopoulos N (2006) TGF-beta: a mobile purveyor of immune privilege. Immunol Rev 213:213–227

    PubMed  CAS  Google Scholar 

  8. Beiter K, Hiendlmeyer E, Brabletz T et al (2005) Beta-catenin regulates the expression of tenascin-C in human colorectal tumors. Oncogene 24:8200–8204

    PubMed  CAS  Google Scholar 

  9. Viloria-Petit AM, Wrana JL (2010) The TGFbeta-Par6 polarity pathway: linking the Par complex to EMT and breast cancer progression. Cell Cycle 9:623–624

    PubMed  CAS  Google Scholar 

  10. Massague J (2008) TGFbeta in cancer. Cell 134:215–230

    PubMed  CAS  Google Scholar 

  11. Goumans MJ, Liu Z, ten Dijke P (2009) TGF-beta signaling in vascular biology and dysfunction. Cell Res 19:116–127

    PubMed  CAS  Google Scholar 

  12. Pardali E, Goumans MJ, ten Dijke P (2010) Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends Cell Biol 20:556–567

    PubMed  CAS  Google Scholar 

  13. Pardali E, ten Dijke P (2009) Transforming growth factor-beta signaling and tumor angiogenesis. Front Biosci 14:4848–4861

    PubMed  CAS  Google Scholar 

  14. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700

    PubMed  CAS  Google Scholar 

  15. Oh SP, Seki T, Goss KA, Imamura T et al (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci U S A 97:2626–2631

    PubMed  CAS  Google Scholar 

  16. Yamashita H, ten Dijke P, Franzen P et al (1994) Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-beta. J Biol Chem 269:20172–20178

    PubMed  CAS  Google Scholar 

  17. Luo K, Lodish HF (1997) Positive and negative regulation of type II TGF-beta receptor signal transduction by autophosphorylation on multiple serine residues. EMBO J 16:1970–1981

    PubMed  CAS  Google Scholar 

  18. Lawler S, Feng XH, Chen RH et al (1997) The type II transforming growth factor-beta receptor autophosphorylates not only on serine and threonine but also on tyrosine residues. J Biol Chem 272:14850–14859

    PubMed  CAS  Google Scholar 

  19. Ravichandran KS (2001) Signaling via Shc family adapter proteins. Oncogene 20:6322–6330

    PubMed  CAS  Google Scholar 

  20. Galliher AJ, Schiemann WP (2007) Src phosphorylates Tyr284 in TGF-beta type II receptor and regulates TGF-beta stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Cancer Res 67:3752–3758

    PubMed  CAS  Google Scholar 

  21. Tsukazaki T, Chiang TA, Davison AF et al (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 95:779–791

    PubMed  CAS  Google Scholar 

  22. Miyazawa K, Shinozaki M, Hara T et al (2002) Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells 7:1191–1204

    PubMed  CAS  Google Scholar 

  23. Jayaraman L, Massague J (2000) Distinct oligomeric states of SMAD proteins in the transforming growth factor-beta pathway. J Biol Chem 275:40710–40717

    PubMed  CAS  Google Scholar 

  24. Kurisaki A, Kose S, Yoneda Y et al (2001) Transforming growth factor-beta induces nuclear import of Smad3 in an importin-beta1 and Ran-dependent manner. Mol Biol Cell 12:1079–1091

    PubMed  CAS  Google Scholar 

  25. Xiao Z, Watson N, Rodriguez C, Lodish HF (2001) Nucleocytoplasmic shuttling of Smad1 conferred by its nuclear localization and nuclear export signals. J Biol Chem 276:39404–39410

    PubMed  CAS  Google Scholar 

  26. Shi X, Chen F, Yu J et al (2008) Study of interaction between Smad7 and DNA by single-­molecule force spectroscopy. Biochem Biophys Res Commun 377:1284–1287

    PubMed  CAS  Google Scholar 

  27. Koinuma D, Tsutsumi S, Kamimura N et al (2009) Chromatin immunoprecipitation on microarray analysis of Smad2/3 binding sites reveals roles of ETS1 and TFAP2A in transforming growth factor beta signaling. Mol Cell Biol 29:172–186

    PubMed  CAS  Google Scholar 

  28. Stopa M, Anhuf D, Terstegen L et al (2000) Participation of Smad2, Smad3, and Smad4 in transforming growth factor beta (TGF-beta)-induced activation of Smad7. THE TGF-beta response element of the promoter requires functional Smad binding element and E-box sequences for transcriptional regulation. J Biol Chem 275:29308–29317

    PubMed  CAS  Google Scholar 

  29. Yan X, Liu Z, Chen Y (2009) Regulation of TGF-beta signaling by Smad7. Acta Biochim Biophys Sin (Shanghai) 41:263–272

    CAS  Google Scholar 

  30. Mochizuki T, Miyazaki H, Hara T et al (2004) Roles for the MH2 domain of Smad7 in the specific inhibition of transforming growth factor-beta superfamily signaling. J Biol Chem 279:31568–31574

    PubMed  CAS  Google Scholar 

  31. Kavsak P, Rasmussen RK, Causing CG et al (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 6:1365–1375

    PubMed  CAS  Google Scholar 

  32. Shi W, Sun C, He B et al (2004) GADD34-PP1c recruited by Smad7 dephosphorylates TGFbeta type I receptor. J Cell Biol 164:291–300

    PubMed  CAS  Google Scholar 

  33. Ichijo T, Voutetakis A, Cotrim AP et al (2005) The Smad6-histone deacetylase 3 complex silences the transcriptional activity of the glucocorticoid receptor: potential clinical implications. J Biol Chem 280(51):42067–42077

    PubMed  CAS  Google Scholar 

  34. Olsson N, Piek E, Sundstrom M et al (2001) Transforming growth factor-beta-mediated mast cell migration depends on mitogen-activated protein kinase activity. Cell Signal 13(7):483–490

    PubMed  Google Scholar 

  35. Engel ME, McDonnell MA, Law BK, Moses HL (1999) Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. J Biol Chem 274:37413–37420

    PubMed  CAS  Google Scholar 

  36. Zavadil J, Bitzer M, Liang D et al (2001) Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proc Natl Acad Sci U S A 98:6686–6691

    PubMed  CAS  Google Scholar 

  37. Davies M, Robinson M, Smith E et al (2005) Induction of an epithelial to mesenchymal transition in human immortal and malignant keratinocytes by TGF-beta1 involves MAPK, Smad and AP-1 signalling pathways. J Biol Chem 95:918–931

    CAS  Google Scholar 

  38. Wang C, Deng L, Hong M et al (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412:346–351

    PubMed  CAS  Google Scholar 

  39. Shim JH, Xiao C, Paschal AE et al (2005) TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 19:2668–2681

    PubMed  CAS  Google Scholar 

  40. Jadrich JL, O’Connor MB, Coucouvanis E (2006) The TGF beta activated kinase TAK1 regulates vascular development in vivo. Development 133(8):1529–1541

    PubMed  CAS  Google Scholar 

  41. Liao JH, Chen JS, Chai MQ et al (2001) The involvement of p38 MAPK in transforming growth factor beta1-induced apoptosis in murine hepatocytes. Cell Res 11:89–94

    PubMed  CAS  Google Scholar 

  42. Yamashita M, Fatyol K, Jin C et al (2008) TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell 31:918–924

    PubMed  CAS  Google Scholar 

  43. Ferrari G, Terushkin V, Wolff MJ et al (2012) TGF-beta1 induces endothelial cell apoptosis by shifting VEGF activation of p38MAPK from the prosurvival p38beta to proapoptotic p38alpha. Mol Cancer Res 10:605–614

    PubMed  CAS  Google Scholar 

  44. Edlund S, Landstrom M, Heldin CH, Aspenstrom P (2002) Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell 13:902–914

    PubMed  CAS  Google Scholar 

  45. Ozdamar B, Bose R, Barrios-Rodiles M et al (2005) Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307:1603–1609

    PubMed  CAS  Google Scholar 

  46. Wang L, Zeng H, Wang P et al (2003) Neuropilin-1-mediated vascular permeability factor/vascular endothelial growth factor-dependent endothelial cell migration. J Biol Chem 278:48848–48860

    PubMed  CAS  Google Scholar 

  47. Townsend TA, Wrana JL, Davis GE, Barnett JV (2008) Transforming growth factor-beta-stimulated endocardial cell transformation is dependent on Par6c regulation of RhoA. J Biol Chem 283:13834–13841

    PubMed  CAS  Google Scholar 

  48. Pepper MS, Vassalli JD, Orci L, Montesano R (1993) Biphasic effect of transforming growth factor-beta 1 on in vitro angiogenesis. Exp Cell Res 204:356–363

    PubMed  CAS  Google Scholar 

  49. Yi JY, Shin I, Arteaga CL (2005) Type I transforming growth factor beta receptor binds to and activates phosphatidylinositol 3-kinase. J Biol Chem 280:10870–10876

    PubMed  CAS  Google Scholar 

  50. Bakin AV, Tomlinson AK, Bhowmick NA et al (2000) Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275:36803–36810

    PubMed  CAS  Google Scholar 

  51. Lebrin F, Deckers M, Bertolino P, Ten Dijke P (2005) TGF-beta receptor function in the endothelium. Cardiovasc Res 65:599–608

    PubMed  CAS  Google Scholar 

  52. Gerhardt H (2008) VEGF and endothelial guidance in angiogenic sprouting. Organogenesis 4:241–246

    PubMed  Google Scholar 

  53. Gerhardt H, Golding M, Fruttiger M et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177

    PubMed  CAS  Google Scholar 

  54. Kume T (2012) Ligand-dependent Notch signaling in vascular formation. Adv Exp Med Biol 727:210–222

    PubMed  CAS  Google Scholar 

  55. Holderfield MT, Hughes CC (2008) Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circ Res 102:637–652

    PubMed  CAS  Google Scholar 

  56. van Meeteren LA, Thorikay M, Bergqvist S et al (2012) An anti-human ALK1 antibody attenuates BMP9 induced ALK1 signaling and interferes with endothelial cell sprouting. J Biol Chem 287:18551–18561

    PubMed  Google Scholar 

  57. Larrivee B, Prahst C, Gordon E et al (2012) ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev Cell 22:489–500

    PubMed  CAS  Google Scholar 

  58. Kuczynski EA, Viloria-Petit AM, Coomber BL (2011) Colorectal carcinoma cell production of transforming growth factor beta decreases expression of endothelial cell vascular endothelial growth factor receptor 2. Cancer 117:5601–5611

    PubMed  CAS  Google Scholar 

  59. van Meeteren LA, ten Dijke P (2012) Regulation of endothelial cell plasticity by TGF-beta. Cell Tissue Res 347:177–186

    PubMed  Google Scholar 

  60. Yoshimatsu Y, Watabe T (2011) Roles of TGF-beta signals in endothelial-mesenchymal transition during cardiac fibrosis. Int J Inflam 2011:724080

    PubMed  Google Scholar 

  61. Birukova AA, Adyshev D, Gorshkov B et al (2005) ALK5 and Smad4 are involved in TGF-­beta1-induced pulmonary endothelial permeability. FEBS Lett 579:4031–4037

    PubMed  CAS  Google Scholar 

  62. Watabe T, Nishihara A, Mishima K et al (2003) TGF-beta receptor kinase inhibitor enhances growth and integrity of embryonic stem cell-derived endothelial cells. J Cell Biol 163:1303–1311

    PubMed  CAS  Google Scholar 

  63. Walshe TE, Saint-Geniez M, Maharaj AS et al (2009) TGF-beta is required for vascular barrier function, endothelial survival and homeostasis of the adult microvasculature. PLoS One 4:e5149

    PubMed  Google Scholar 

  64. Ota T, Fujii M, Sugizaki T et al (2002) Targets of transcriptional regulation by two distinct type I receptors for transforming growth factor-beta in human umbilical vein endothelial cells. J Cell Physiol 193:299–318

    PubMed  CAS  Google Scholar 

  65. Taddei A, Giampietro C, Conti A et al (2008) Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol 10:923–934

    PubMed  CAS  Google Scholar 

  66. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027

    PubMed  CAS  Google Scholar 

  67. Esser S, Lampugnani MG, Corada M et al (1998) Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci 111:1853–1865

    PubMed  CAS  Google Scholar 

  68. Ferrari G, Pintucci G, Seghezzi G et al (2006) VEGF, a prosurvival factor, acts in concert with TGF-beta1 to induce endothelial cell apoptosis. Proc Natl Acad Sci U S A 103:17260–17265

    PubMed  CAS  Google Scholar 

  69. Goumans MJ, Valdimarsdottir G, Itoh S et al (2002) Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 21:1743–1753

    PubMed  CAS  Google Scholar 

  70. Goumans MJ, Valdimarsdottir G, Itoh S et al (2003) Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. Mol Cell 12:817–828

    PubMed  CAS  Google Scholar 

  71. Cunha SI, Pardali E, Thorikay M et al (2010) Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. J Exp Med 207:85–100

    PubMed  CAS  Google Scholar 

  72. David L, Mallet C, Vailhe B et al (2007) Activin receptor-like kinase 1 inhibits human microvascular endothelial cell migration: potential roles for JNK and ERK. J Cell Physiol 213:484–489

    PubMed  CAS  Google Scholar 

  73. Lamouille S, Mallet C, Feige JJ, Bailly S (2002) Activin receptor-like kinase 1 is implicated in the maturation phase of angiogenesis. Blood 100:4495–4501

    PubMed  CAS  Google Scholar 

  74. Mallet C, Vittet D, Feige JJ, Bailly S (2006) TGFbeta1 induces vasculogenesis and inhibits angiogenic sprouting in an embryonic stem cell differentiation model: respective contribution of ALK1 and ALK5. Stem Cells 24:2420–2427

    PubMed  CAS  Google Scholar 

  75. Moustakas A, Pardali K, Gaal A, Heldin CH (2002) Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunol Lett 82:85–91

    PubMed  CAS  Google Scholar 

  76. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-­beta family signalling. Nature 425:577–584

    PubMed  CAS  Google Scholar 

  77. Liu Z, Kobayashi K, van Dinther M et al (2009) VEGF and inhibitors of TGFbeta type-I receptor kinase synergistically promote blood-vessel formation by inducing alpha5-integrin expression. J Cell Sci 122:3294–3302

    PubMed  CAS  Google Scholar 

  78. Gougos A, Letarte M (1990) Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J Biol Chem 265:8361–8364

    PubMed  CAS  Google Scholar 

  79. Moren A, Ichijo H, Miyazono K (1992) Molecular cloning and characterization of the human and porcine transforming growth factor-beta type III receptors. Biochem Biophys Res Commun 189:356–362

    PubMed  CAS  Google Scholar 

  80. Wong SH, Hamel L, Chevalier S, Philip A (2000) Endoglin expression on human microvascular endothelial cells association with betaglycan and formation of higher order complexes with TGF-beta signalling receptors. Eur J Biochem 267:5550–5560

    PubMed  CAS  Google Scholar 

  81. Brown CB, Boyer AS, Runyan RB, Barnett JV (1999) Requirement of type III TGF-beta receptor for endocardial cell transformation in the heart. Science 283:2080–2082

    PubMed  CAS  Google Scholar 

  82. Lamarre J, Vasudevan J, Gonias SL (1994) Plasmin cleaves betaglycan and releases a 60 kDa transforming growth factor-beta complex from the cell surface. Biochem J 302:199–205

    PubMed  CAS  Google Scholar 

  83. Kaitu’u-Lino TJ, Palmer KR, Whitehead CL et al (2012) MMP-14 is expressed in preeclamptic placentas and mediates release of soluble endoglin. Am J Pathol 180:888–894

    PubMed  Google Scholar 

  84. Li C, Issa R, Kumar P et al (2003) CD105 prevents apoptosis in hypoxic endothelial cells. J Cell Sci 116:2677–2685

    PubMed  CAS  Google Scholar 

  85. Scharpfenecker M, van Dinther M, Liu Z et al (2007) BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 120:964–972

    PubMed  CAS  Google Scholar 

  86. Koleva RI, Conley BA, Romero D et al (2006) Endoglin structure and function: determinants of endoglin phosphorylation by transforming growth factor-beta receptors. J Biol Chem 281:25110–25123

    PubMed  CAS  Google Scholar 

  87. Blobe GC, Schiemann WP, Pepin MC et al (2001) Functional roles for the cytoplasmic domain of the type III transforming growth factor beta receptor in regulating transforming growth factor beta signaling. J Biol Chem 276:24627–24637

    PubMed  CAS  Google Scholar 

  88. Ray BN, Lee NY, How T, Blobe GC (2010) ALK5 phosphorylation of the endoglin cytoplasmic domain regulates Smad1/5/8 signaling and endothelial cell migration. Carcinogenesis 31:435–441

    PubMed  CAS  Google Scholar 

  89. Lebrin F, Goumans MJ, Jonker L et al (2004) Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J 23:4018–4028

    PubMed  CAS  Google Scholar 

  90. Blanco FJ, Santibanez JF, Guerrero-Esteo M et al (2005) Interaction and functional interplay between endoglin and ALK-1, two components of the endothelial transforming growth factor-beta receptor complex. J Cell Physiol 204:574–584

    PubMed  CAS  Google Scholar 

  91. Warrington K, Hillarby MC, Li C et al (2005) Functional role of CD105 in TGF-beta1 signalling in murine and human endothelial cells. Anticancer Res 25(3B):1851–1864

    PubMed  CAS  Google Scholar 

  92. Kirkbride KC, Townsend TA, Bruinsma MW et al (2008) Bone morphogenetic proteins signal through the transforming growth factor-beta type III receptor. J Biol Chem 283:7628–7637

    PubMed  CAS  Google Scholar 

  93. Farnworth PG, Wang Y, Escalona R et al (2007) Transforming growth factor-beta blocks inhibin binding to different target cell types in a context-dependent manner through dual mechanisms involving betaglycan. Endocrinology 148:5355–5368

    PubMed  CAS  Google Scholar 

  94. Esparza-Lopez J, Montiel JL, Vilchis-Landeros MM et al (2001) Ligand binding and functional properties of betaglycan, a co-receptor of the transforming growth factor-beta superfamily. Specialized binding regions for transforming growth factor-beta and inhibin A. J Biol Chem 276:14588–14596

    PubMed  CAS  Google Scholar 

  95. del Re E, Babitt JL, Pirani A et al (2004) In the absence of type III receptor, the transforming growth factor (TGF)-beta type II-B receptor requires the type I receptor to bind TGF-beta2. J Biol Chem 279:22765–22772

    PubMed  Google Scholar 

  96. Cheifetz S, Bellon T, Cales C et al (1992) Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem 267:19027–19030

    PubMed  CAS  Google Scholar 

  97. Barbara NP, Wrana JL, Letarte M (1999) Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-­beta superfamily. J Biol Chem 274:584–594

    PubMed  CAS  Google Scholar 

  98. Letamendia A, Lastres P, Almendro N et al (1998) Endoglin, a component of the TGF-beta receptor system, is a differentiation marker of human choriocarcinoma cells. Int J Cancer 76:541–546

    PubMed  CAS  Google Scholar 

  99. Venkatesha S, Toporsian M, Lam C et al (2006) Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 12:642–649

    PubMed  CAS  Google Scholar 

  100. Scherner O, Meurer SK, Tihaa L et al (2007) Endoglin differentially modulates antagonistic transforming growth factor-beta1 and BMP-7 signaling. J Biol Chem 282:13934–13943

    PubMed  CAS  Google Scholar 

  101. Guo B, Slevin M, Li C et al (2004) CD105 inhibits transforming growth factor-beta-Smad3 signalling. Anticancer Res 24:1337–1345

    PubMed  CAS  Google Scholar 

  102. Lee NY, Blobe GC (2007) The interaction of endoglin with beta-arrestin2 regulates transforming growth factor-beta-mediated ERK activation and migration in endothelial cells. J Biol Chem 282:21507–21517

    PubMed  CAS  Google Scholar 

  103. Conley BA, Koleva R, Smith JD et al (2004) Endoglin controls cell migration and composition of focal adhesions: function of the cytosolic domain. J Biol Chem 279:27440–27449

    PubMed  CAS  Google Scholar 

  104. Torsney E, Charlton R, Parums D et al (2002) Inducible expression of human endoglin during inflammation and wound healing in vivo. Inflamm Res 51:464–470

    PubMed  CAS  Google Scholar 

  105. Jonker L, Arthur HM (2002) Endoglin expression in early development is associated with vasculogenesis and angiogenesis. Mech Dev 110:193–196

    PubMed  CAS  Google Scholar 

  106. Abdalla SA, Letarte M (2006) Hereditary haemorrhagic telangiectasia: current views on genetics and mechanisms of disease. J Med Genet 43:97–110

    PubMed  CAS  Google Scholar 

  107. Letteboer TG, Mager JJ, Snijder RJ et al (2006) Genotype-phenotype relationship in hereditary haemorrhagic telangiectasia. J Med Genet 43:371–377

    PubMed  CAS  Google Scholar 

  108. McAllister KA, Grogg KM, Johnson DW et al (1994) Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8:345–351

    PubMed  CAS  Google Scholar 

  109. Johnson DW, Berg JN, Baldwin MA et al (1996) Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 13:189–195

    PubMed  CAS  Google Scholar 

  110. Gaengel K, Genove G, Armulik A, Betsholtz C (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29:630–638

    PubMed  CAS  Google Scholar 

  111. Ribatti D, Nico B, Crivellato E (2011) The role of pericytes in angiogenesis. Int J Dev Biol 55:261–268

    PubMed  CAS  Google Scholar 

  112. Agardh CD, Agardh E, Hultberg B, Ahren B (2000) Long-standing hyperglycemia in C57BL/6J mice does not affect retinal glutathione levels or endothelial/pericyte ratio in retinal capillaries. J Diabetes Complications 14:146–153

    PubMed  CAS  Google Scholar 

  113. Tian M, Neil JR, Schiemann WP (2011) Transforming growth factor-beta and the hallmarks of cancer. Cell Signal 23:951–962

    PubMed  CAS  Google Scholar 

  114. Nishishita T, Lin PC (2004) Angiopoietin 1, PDGF-B, and TGF-beta gene regulation in endothelial cell and smooth muscle cell interaction. J Biol Chem 91:584–593

    CAS  Google Scholar 

  115. Ma J, Wang Q, Fei T et al (2007) MCP-1 mediates TGF-beta-induced angiogenesis by stimulating vascular smooth muscle cell migration. Blood 109:987–994

    PubMed  CAS  Google Scholar 

  116. Slevin M, Krupinski J, Rovira N et al (2009) Identification of pro-angiogenic markers in blood vessels from stroked-affected brain tissue using laser-capture microdissection. BMC Genomics 10:113

    PubMed  Google Scholar 

  117. Antonelli-Orlidge A, Saunders KB, Smith SR, D’Amore PA (1989) An activated form of transforming growth factor beta is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci U S A 86:4544–4548

    PubMed  CAS  Google Scholar 

  118. Darland DC, D’Amore PA (2001) TGF beta is required for the formation of capillary-like structures in three-dimensional cocultures of 10T1/2 and endothelial cells. Angiogenesis 4:11–20

    PubMed  CAS  Google Scholar 

  119. Hirschi KK, Burt JM, Hirschi KD, Dai C (2003) Gap junction communication mediates transforming growth factor-beta activation and endothelial-induced mural cell differentiation. Circ Res 93:429–437

    PubMed  CAS  Google Scholar 

  120. Li F, Lan Y, Wang Y et al (2011) Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch. Dev Cell 20:291–302

    PubMed  CAS  Google Scholar 

  121. Kurpinski K, Lam H, Chu J et al (2010) Transforming growth factor-beta and notch signaling mediate stem cell differentiation into smooth muscle cells. Stem Cells 28:734–742

    PubMed  CAS  Google Scholar 

  122. Rivera LB, Brekken RA (2011) SPARC promotes pericyte recruitment via inhibition of endoglin-­dependent TGF-beta1 activity. J Cell Biol 193:1305–1319

    PubMed  CAS  Google Scholar 

  123. Londesborough A, Vaahtomeri K, Tiainen M et al (2008) LKB1 in endothelial cells is required for angiogenesis and TGFbeta-mediated vascular smooth muscle cell recruitment. Development 135:2331–2338

    PubMed  CAS  Google Scholar 

  124. Carvalho RL, Jonker L, Goumans MJ et al (2004) Defective paracrine signalling by TGFbeta in yolk sac vasculature of endoglin mutant mice: a paradigm for hereditary haemorrhagic telangiectasia. Development 131:6237–6247

    PubMed  CAS  Google Scholar 

  125. Folkman J (2001) Angiogenesis-dependent diseases. Semin Oncol 28(6):536–542

    PubMed  CAS  Google Scholar 

  126. Franses JW, Edelman ER (2011) The evolution of endothelial regulatory paradigms in cancer biology and vascular repair. Cancer Res 71:7339–7344

    PubMed  CAS  Google Scholar 

  127. Chaudhary A, Hilton MB, Seaman S et al (2012) TEM8/ANTXR1 blockade inhibits pathological angiogenesis and potentiates tumoricidal responses against multiple cancer types. Cancer Cell 21:212–226

    PubMed  CAS  Google Scholar 

  128. Cunha SI, Pietras K (2011) ALK1 as an emerging target for antiangiogenic therapy of cancer. Blood 117:6999–7006

    PubMed  CAS  Google Scholar 

  129. Gallione CJ, Repetto GM, Legius E et al (2004) A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet 363:852–859

    PubMed  CAS  Google Scholar 

  130. Mahmoud M, Upton PD, Arthur HM (2011) Angiogenesis regulation by TGFbeta signalling: clues from an inherited vascular disease. Biochem Soc Trans 39:1659–1666

    PubMed  CAS  Google Scholar 

  131. Benzinou M, Clermont FF, Letteboer TG et al (2012) Mouse and human strategies identify PTPN14 as a modifier of angiogenesis and hereditary haemorrhagic telangiectasia. Nat Commun 3:616

    PubMed  Google Scholar 

  132. Cao S, Yaqoob U, Das A et al (2010) Neuropilin-1 promotes cirrhosis of the rodent and human liver by enhancing PDGF/TGF-beta signaling in hepatic stellate cells. J Clin Invest 120:2379–2394

    PubMed  CAS  Google Scholar 

  133. Xin C, Ren S, Kleuser B et al (2004) Sphingosine 1-phosphate cross-activates the Smad signaling cascade and mimics transforming growth factor-beta-induced cell responses. J Biol Chem 279:35255–35262

    PubMed  CAS  Google Scholar 

  134. Mustafa DA, Dekker LJ, Stingl C et al (2012) A proteome comparison between physiological angiogenesis and angiogenesis in glioblastoma. Mol Cell Proteomics 11:M111.008466

    PubMed  Google Scholar 

  135. Kuczynski EA, Patten SG, Coomber BL (2011) VEGFR2 expression and TGF-beta signaling in initial and recurrent high-grade human glioma. Oncology 81:126–134

    PubMed  CAS  Google Scholar 

  136. Seon BK, Haba A, Matsuno F, Takahashi N et al (2011) Endoglin-targeted cancer therapy. Curr Drug Deliv 8:135–143

    PubMed  CAS  Google Scholar 

  137. Duwel A, Eleno N, Jerkic M et al (2007) Reduced tumor growth and angiogenesis in endoglin-­haploinsufficient mice. Tumour Biol 28:1–8

    PubMed  Google Scholar 

  138. Castonguay R, Werner ED, Matthews RG et al (2011) Soluble endoglin specifically binds bone morphogenetic proteins 9 and 10 via its orphan domain, inhibits blood vessel formation, and suppresses tumor growth. J Biol Chem 286:30034–30046

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alicia Viloria-Petit or Brenda L. Coomber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Viloria-Petit, A., Richard, A., Zours, S., Jarad, M., Coomber, B.L. (2013). Role of Transforming Growth Factor Beta in Angiogenesis. In: Mehta, J., Dhalla, N. (eds) Biochemical Basis and Therapeutic Implications of Angiogenesis. Advances in Biochemistry in Health and Disease, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5857-9_2

Download citation

Publish with us

Policies and ethics