Skip to main content
Log in

Melting Behavior of Titanium-Bearing Electric Furnace Slag for Effective Smelting of Vanadium Titanomagnetite

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The melting behavior of titanium-bearing electric furnace slag is a key factor for effective smelting of vanadium titanomagnetite in electric furnaces. The melting behavior of synthetically produced CaO-SiO2-MgO-Al2O3-TiO2 slags with different TiO2 contents (48 wt.% to 54 wt.%), CaO/SiO2 mass ratios (0.8 to 1.4), and MgO contents (8 wt.% to 14 wt.%) was experimentally investigated in this study. The results demonstrate that the softening and melting temperatures decreased as the CaO/SiO2 ratio was increased but increased with increasing contents of TiO2 and MgO. The predicted slag phase composition showed that increasing the CaO/SiO2 mass ratio promoted CaTiO3 formation, whereas the proportion of MgTi2O5 phase increased with increasing MgO content. Appropriate slag compositions with binary basicity of 0.8 to 1.0, 10 wt.% to 12 wt.% MgO, and more than 48 wt.% TiO2 are suggested to obtain titanium-bearing electric furnace slag with low melting temperature and appropriate phase composition for titanium extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.G. Du, Principles of Blast Furnaces Melting Vanadium-Titanium Magnetite (Beijing: Science Press, 1996), pp. 1–8.

    Google Scholar 

  2. F.Q. Zheng, F. Chen, Y.F. Guo, T. Jiang, A.Y. Travyanov, and G.Z. Qiu, JOM 68, 1476 (2016).

    Article  Google Scholar 

  3. B. Zhao, E. Jak, P. Hayes, and J. Iron, Steel Res. Int. 16, 1172 (2009).

    Google Scholar 

  4. T. Jiang, S. Wang, Y.F. Guo, F. Chen, and F.Q. Zheng, Metals 6, 107 (2016).

    Article  Google Scholar 

  5. S. Wang, M. Chen, Y.F. Guo, T. Jiang, and B.J. Zhao, JOM (2018). https://doi.org/10.1007/s11837-018-2863-7.

    Google Scholar 

  6. W. Li, G.Q. Fu, M.S. Chu, and M.Y. Zhu, Steel Res. Int. 88, 1 (2017).

    Google Scholar 

  7. Y.L. Sui, Y.F. Guo, T. Jiang, and G.Z. Qiu, J. Alloys Compd. 706, 546 (2017).

    Article  Google Scholar 

  8. C. Lv, K. Yang, S.M. Wen, S.J. Bai, and Q.C. Feng, JOM 69, 1801 (2017).

    Article  Google Scholar 

  9. T. Hu, X. Lv, C. Bai, Z. Lun, and G. Qiu, Metal. Mater. Trans. B. 44, 252 (2013).

    Article  Google Scholar 

  10. W. Zhao, H.T. Wang, Z.G. Liu, M.S. Chu, Z.W. Ying, and J. Tang, JOM 69, 1737 (2017).

    Article  Google Scholar 

  11. W.G. Fu, Y.C. Wen, H.E. Xie, and J. Iron, Steel Res. Int. 18, 7 (2011).

    Article  Google Scholar 

  12. W.S. Steinberg and P.C. Pistorius, Ironmak. Steelmak. 36, 500 (2013).

    Article  Google Scholar 

  13. W.G. Fu and E.X. Hong, Steel Res. Int. 82, 501 (2011).

    Article  Google Scholar 

  14. W.S. Steinberg, University of Pretoria, Ph.D thesis (2009)

  15. W. Zhang, Z. Zhu, and C.Y. Cheng, Hydrometallurgy 108, 177 (2011).

    Article  Google Scholar 

  16. S. Wang, Y. Guo, T. Jiang, L. Yang, F. Chen, F. Zheng, X. Xie, and M. Tang, JOM 69, 1646 (2017).

    Article  Google Scholar 

  17. B. Peng, G. Wu, B. Dai, P. Zhang, and L. Zhang, Met. Mater. Metall. Eng. 40, 18 (2012).

    Google Scholar 

  18. J. Zhang, L. Shi, W. Ao, and J. Iron, Steel Res. Int. 4, 6 (2010).

    Google Scholar 

  19. Z. Tang, X. Ding, Y. Dong, C. Liu, and G. Wei, Chin. J. Mater. Res. 30, 443 (2016).

    Google Scholar 

  20. I.P. Ratchev, and G.R. Belton, in 5th International Conference on Molten Slags, Fluxes and Salts, Sydney, Australia, 5–8 January, 1997, pp. 387–393

  21. J. Van der Colf, D.D. Howat, and J.S. Afr, Inst. Min. Metall. 79, 255 (1979).

    Google Scholar 

  22. M. Chen, W. Zhang, Z. Zhao, T. Evans, and B. Zhao, ISIJ Int. 56, 2156 (2016).

    Article  Google Scholar 

  23. H.A. Fine and S. Arac, Ironmaking Steelmaking 7, 160 (1980).

    Google Scholar 

  24. Y.H. Gao, Z.Y. Liang, Q.C. Liu, and L.T. Bian, Asian J. Chem. 24, 5337 (2012).

    Google Scholar 

  25. S.X. Cui and J.Z. Li, Iron Steel Vanadium Titanium 16, 57 (1995).

    Google Scholar 

  26. S.M. Kramer, I.G. Gorichev, Y.A. Lainer, I.V. Artamonova, and M.V. Terekhova, Russ. Metall. 2014, 704 (2014).

    Article  Google Scholar 

  27. M.Z. Wu, H.H. Lü, M.C. Liu, Z.L. Zhang, X.R. Wu, W.M. Liu, P. Wang, and L.S. Li, Hydrometallurgy 167, 8 (2017).

    Article  Google Scholar 

  28. A.R. Boccaccini and B. Hamann, J. Mater. Sci. 34, 5419 (1999).

    Article  Google Scholar 

  29. L.S. Ökvist, Steel Res. Int. 75, 792 (2004).

    Article  Google Scholar 

  30. H.C. Chuang, W.S. Hwang, and S.H. Liu, Mater. Trans. 50, 1448 (2009).

    Article  Google Scholar 

  31. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.A. Van Ende, Calphad. 54, 35 (2016). https://doi.org/10.1016/j.calphad.2016.05.002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yufeng Guo or Feng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Guo, Y., Jiang, T. et al. Melting Behavior of Titanium-Bearing Electric Furnace Slag for Effective Smelting of Vanadium Titanomagnetite. JOM 71, 1858–1865 (2019). https://doi.org/10.1007/s11837-018-2983-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2983-0

Navigation