Skip to main content
Log in

Plastic Deformation of Metal/Ceramic Nanolayered Composites

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Metal/ceramic multilayers combine high hardness of the ceramic layer and the high ductility of the metallic layer, enabling the design of novel composite coatings with high hardness and measurable ductility when the layer thickness reduces to a few nanometers. In this article, we review recent work with a focus on plastic deformation of metal/ceramic nanolayered composites from three aspects: experiment, theory, and atomistic modeling, and we propose several research directions in this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.B. Sinnott and E.C. Dickey, Mater. Sci. Eng. R Rep. 43, 1 (2003).

    Article  Google Scholar 

  2. G. Abadias, S. Dub, and R. Shmegera, Surf. Coat. Technol. 200, 6538 (2006).

    Article  Google Scholar 

  3. D. Bhattacharyya, N.A. Mara, P. Dickerson, R.G. Hoagland, and A. Misra, Philos. Mag. 90, 1711 (2010).

    Article  Google Scholar 

  4. D. Bhattacharyya, N.A. Mara, R.G. Hoagland, and A. Misra, Scripta Mater. 58, 981 (2008).

    Article  Google Scholar 

  5. D. Bhattacharyya, N.A. Mara, P. Dickerson, R.G. Hoagland, and A. Misra, Acta Mater. 59, 3804 (2011).

    Article  Google Scholar 

  6. M.B. Daia, P. Aubert, S. Labdi, C. Sant, F.A. Sadi, P. Houdy, and J.L. Bozet, J. Appl. Phys. 87, 7753 (2000).

    Article  Google Scholar 

  7. K.K. Shih and D.B. Dove, Appl. Phys. Lett. 61, 654 (1992).

    Article  Google Scholar 

  8. J.M. Lackner, W. Waldhauser, B. Major, L. Major, and M. Kot, Thin Solid Films 534, 417 (2013).

    Article  Google Scholar 

  9. A. Dück, N. Gamer, W. Gesatzke, M. Griepentrog, W. Österle, M. Sahre, and I. Urban, Surf. Coat. Technol. 142–144, 579 (2001).

    Article  Google Scholar 

  10. K.J. Ma, A. Bloyce, and T. Bell, Surf. Coat. Technol. 76–77, 297 (1995).

    Article  Google Scholar 

  11. A. Madan, Y. Wang, S.A. Barnett, C. Engström, H. Ljungcrantz, L. Hultman, and M. Grimsditch, J. Appl. Phys. 84, 776 (1998).

    Article  Google Scholar 

  12. A. Madan, X. Chu, and S.A. Barnett, Appl. Phys. Lett. 68, 2198 (1996).

    Article  Google Scholar 

  13. S.A. Barnett and A. Madan, Scripta Mater. 50, 739 (2004).

    Article  Google Scholar 

  14. A. Madan, S.A. Barnett, A. Misra, H. Kung, and M. Nastasi, J. Vac. Sci. Technol., A 19, 952 (2001).

    Article  Google Scholar 

  15. S.A. Barnett, A. Madan, I. Kim, and K. Martin, MRS Bull. 28, 169 (2003).

    Article  Google Scholar 

  16. G. Abadias, F. Pailloux, and S.N. Dub, Surf. Coat. Technol. 202, 3683 (2008).

    Article  Google Scholar 

  17. G. Abadias, C. Tromas, Y.Y. Tse, and A. Michel, Mater. Res. Soc. Symp. Proc. 880 E, BB2.8 (2005).

  18. C.H. Liu, W.-Z. Li, and H.-D. Li, Nucl. Instrum. Methods Phys. Res. Sect. B 95, 323 (1995).

  19. J.L. He, W.Z. Li, H.D. Li, and C.H. Liu, Surf. Coat. Technol. 103–104, 276 (1998).

    Article  Google Scholar 

  20. T.D. Moustakas, J. Scanlon, J.Y. Koo, H.W. Deckman, A. Ozekcin, R. Friedman, and J.A. McHenry, Mater. Sci. Eng., B 6, 179 (1990).

    Article  Google Scholar 

  21. J. Wang, W.-Z. Li, H.-D. Li, B. Shi, and J.-B. Luo, Thin Solid Films 366, 117 (2000).

    Article  Google Scholar 

  22. Z. Chen and J.J. Mecholsky, J. Mater. Res. 8, 2362 (1993).

    Article  Google Scholar 

  23. A.T. Alpas, J.D. Embury, D.A. Hardwick, and R.W. Springer, J. Mater. Sci. 25, 1603 (1990).

    Article  Google Scholar 

  24. I.W. Kim, A. Madan, M.W. Guruz, V.P. Dravid, and S.A. Barnett, J. Vac. Sci. Technol., A 19, 2069 (2001).

    Article  Google Scholar 

  25. X. Wang, A. Kolitsch, F. Prokert, and W. Möller, Surf. Coat. Technol. 103–104, 334 (1998).

    Article  Google Scholar 

  26. G.A. Zhang, Z.G. Wu, M.X. Wang, X.Y. Fan, J. Wang, and P.X. Yan, Appl. Surf. Sci. 253, 8835 (2007).

    Article  Google Scholar 

  27. X. Deng, N. Chawla, K.K. Chawla, M. Koopman, and J.P. Chu, Adv. Eng. Mater. 7, 1099 (2005).

    Article  Google Scholar 

  28. X. Deng, C. Cleveland, N. Chawla, T. Karcher, M. Koopman, and K.K. Chawla, J. Mater. Eng. Perform. 14, 417 (2005).

    Article  Google Scholar 

  29. G. Tang, D.R.P. Singh, Y.-L. Shen, and N. Chawla, Mater. Sci. Eng., A 502, 79 (2009).

    Article  Google Scholar 

  30. S. Lotfian, M. Rodríguez, K.E. Yazzie, N. Chawla, J. Llorca, and J.M. Molina-Aldareguía, Acta Mater. 61, 4439 (2013).

    Article  Google Scholar 

  31. D.R.P. Singh, N. Chawla, G. Tang, and Y.-L. Shen, Acta Mater. 58, 6628 (2010).

    Article  Google Scholar 

  32. P.L. Sun, J.P. Chu, T.Y. Lin, Y.L. Shen, and N. Chawla, Mater. Sci. Eng., A 527, 2985 (2010).

    Article  Google Scholar 

  33. G. Tang, Y.-L. Shen, D.R.P. Singh, and N. Chawla, Acta Mater. 58, 2033 (2010).

    Article  Google Scholar 

  34. S. Lotfian, J.M. Molina-Aldareguia, K.E. Yazzie, J. Llorca, and N. Chawla, Philos. Mag. Lett. 92, 362 (2012).

    Article  Google Scholar 

  35. Y.-L. Shen, C.B. Blada, J.J. Williams, and N. Chawla, Mater. Sci. Eng., A 557, 119 (2012).

    Article  Google Scholar 

  36. A.A. Voevodin and J.S. Zabinski, Diam. Relat. Mater. 7, 463 (1998).

    Article  Google Scholar 

  37. P.M. Anderson and C. Li, Nanostructured Mater. 5, 349 (1995).

    Article  Google Scholar 

  38. J. Wang and A. Misra, Curr. Opin. Solid State Mater. Sci. 18, 19 (2014).

    Article  Google Scholar 

  39. W.D. Nix, Math. Mech. Solids 14, 207 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  40. P.M. Anderson and E.R. Kreidler, Mater. Res. Soc. Symp. Proc. 505, 571 (1997).

    Article  Google Scholar 

  41. E.R. Kreidler and P.M. Anderson, Mater. Res. Soc. Symp. Proc. 434, 159 (1996).

    Article  Google Scholar 

  42. J.D. Embury and J.P. Hirth, Acta Metall. Mater. 42, 2051 (1994).

    Article  Google Scholar 

  43. S.I. Rao and P.M. Hazzledine, Philos. Mag. A 80, 2011 (2000).

    Article  Google Scholar 

  44. J. Wang, R.G. Hoagland, J.P. Hirth, and A. Misra, Acta Mater. 56, 5685 (2008).

    Article  Google Scholar 

  45. A. Levay, G. Möbus, V. Vitek, M. Rühle, and G. Tichy, Acta Mater. 47, 4143 (1999).

    Article  Google Scholar 

  46. D.J. Siegel, L.G. Hector Jr., and J.B. Adams, Acta Mater. 50, 619 (2002).

    Article  Google Scholar 

  47. D.J. Siegel, L.G. Hector, and J.B. Adams, Phys. Rev. B 65, 085415 (2002).

    Article  Google Scholar 

  48. D.J. Siegel (Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 2001).

  49. A. Arya and E.A. Carter, J. Chem. Phys. 118, 8982 (2003).

    Article  Google Scholar 

  50. L.M. Liu, S.Q. Wang, and H.Q. Ye, J. Phys.: Condens. Matter 16, 5781 (2004).

    Google Scholar 

  51. W.-S. Jung and S.-H. Chung, Model. Simul. Mater. Sci. Eng. 18, 075008 (2010).

    Article  Google Scholar 

  52. H. Sawada, S. Taniguchi, K. Kawakami, and T. Ozaki, Model. Simul. Mater. Sci. Eng. 21, 045012 (2013).

    Article  Google Scholar 

  53. R. Benedek, D.N. Seidman, M. Minkoff, L.H. Yang, and A. Alavi, Phys. Rev. B 60, 16094 (1999).

    Article  Google Scholar 

  54. R. Benedek, A. Alavi, D.N. Seidman, L.H. Yang, D.A. Muller, and C. Woodward, Phys. Rev. Lett. 84, 3362 (2000).

    Article  Google Scholar 

  55. S. Tanaka, R. Yang, and M. Kohyama, Philos. Mag. 86, 5123 (2006).

    Article  Google Scholar 

  56. A. Christensen and E.A. Carter, J. Chem. Phys. 114, 5816 (2001).

    Article  Google Scholar 

  57. Y. Long and N.X. Chen, Comput. Mater. Sci. 42, 426 (2008).

    Article  Google Scholar 

  58. S.K. Yadav, R. Ramprasad, A. Misra, and X.-Y. Liu, J. Appl. Phys. 111, 083505 (2012).

    Article  Google Scholar 

  59. N.-Y. Park, J.-H. Choi, P.-R. Cha, W.-S. Jung, S.-H. Chung, and S.-C. Lee, J. Phys. Chem. C 117, 187 (2013).

    Article  Google Scholar 

  60. X. Luo, G. Qian, E.G. Wang, and C. Chen, Phys. Rev. B 59, 10125 (1999).

    Article  Google Scholar 

  61. S.V. Dmitriev, N. Yoshikawa, M. Kohyama, S. Tanaka, R. Yang, and Y. Kagawa, Acta Mater. 52, 1959 (2004).

    Article  Google Scholar 

  62. A.P. Sutton and R.W. Balluffi, Interfaces in Crystalline Materials (Oxford, U.K.: Oxford University Press, 2007).

    Google Scholar 

  63. D.E. Spearot, K.I. Jacob, and D.L. McDowell, Int. J. Plast. 23, 143 (2007).

    Article  MATH  Google Scholar 

  64. P.M. Derlet, P. Gumbsch, R. Hoagland, J. Li, D.l. McDowell, H. Van Swygenhoven, and J. Wang, MRS Bull. 34, 184 (2009).

  65. I.N. Mastorakos, H.M. Zbib, and D.F. Bahr, Appl. Phys. Lett. 94, 173114 (2009).

    Article  Google Scholar 

  66. H.M. Zbib, C.T. Overman, F. Akasheh, and D.F. Bahr, Int. J. Plast. 27, 1618 (2011).

    Article  MATH  Google Scholar 

  67. I.J. Beyerlein, N.A. Mara, J. Wang, J.S. Carpenter, S.J. Zheng, W.Z. Han, R.F. Zhang, K. Kang, T. Nizolek, and T.M. Pollock, JOM 64, 1192 (2012).

    Article  Google Scholar 

  68. S. Shao, H.M. Zbib, I.N. Mastorakos, and D.F. Bahr, J. Appl. Phys. 112, 044307 (2012).

    Article  Google Scholar 

  69. N. Abdolrahim, H.M. Zbib, and D.F. Bahr, Int. J. Plast. 52, 33 (2014).

    Article  Google Scholar 

  70. J. Wang, R.F. Zhang, C.Z. Zhou, I.J. Beyerlein, and A. Misra, Int. J. Plast. 53, 40 (2014).

    Article  Google Scholar 

  71. J. Wang, R. Zhang, C. Zhou, I.J. Beyerlein, and A. Misra, J. Mater. Res. 28, 1646 (2013).

    Article  Google Scholar 

  72. H.-K. Kim, W.-S. Jung, and B.-J. Lee, Acta Mater. 57, 3140 (2009).

    Article  Google Scholar 

  73. R.G. Hoagland, J.P. Hirth, and A. Misra, Philos. Mag. 86, 3537 (2006).

    Article  Google Scholar 

  74. V. Teixeira, Thin Solid Films 392, 276 (2001).

    Article  Google Scholar 

  75. J.H. Lee, W.M. Kim, T.S. Lee, M.K. Chung, B. Cheong, and S.G. Kim, Surf. Coat. Technol. 133–134, 220 (2000).

    Article  Google Scholar 

  76. I. Salehinia, J. Wang, D.F. Bahr, and H.M. Zbib, Int. J. Plast. 59, 119 (2014).

    Article  Google Scholar 

  77. S. Shao, H.M. Zbib, I. Mastorakos, and D.F. Bahr, J. Eng. Mater. Technol. 135, 021001 (2013).

    Article  Google Scholar 

  78. J. Wang, C. Zhou, I.J. Beyerlein, and S. Shao, JOM 66, 102 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences (DE-FG02-07ER46435). J.W. acknowledges the support provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, and the Los Alamos National Laboratory Directed Research and Development (LDRD-ER20140450).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Salehinia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehinia, I., Shao, S., Wang, J. et al. Plastic Deformation of Metal/Ceramic Nanolayered Composites. JOM 66, 2078–2085 (2014). https://doi.org/10.1007/s11837-014-1132-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1132-7

Keywords

Navigation