Skip to main content
Log in

Modeling Interface-Dominated Mechanical Behavior of Nanolayered Crystalline Composites

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Interface-dominated nanolayered crystalline composites exhibit extraordinary strength and hardness, far beyond those of their constituent materials. Modeling the deformation of such materials would aid in understanding and designing them for future applications. This task is a multiscale effort. Up to now, most modeling efforts lie at either the atomic scale or the mesoscale. Models that link the two scales are missing. In this work, we develop some tools that aim to help in making this important connection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Misra and A. Gibala, Metall. Mater. Trans. A 30A, 991 (1999).

    Article  Google Scholar 

  2. R.G. Hoagland, T.E. Mitchell, J.P. Hirth, and H. Kung, Philos. Mag. 82, 643 (2002).

    Google Scholar 

  3. S.J. Zheng, I.J. Beyerlein, J.S. Carpenter, K. Kang, J. Wang, W.Z. Han, and N.A. Mara, Nat. Commun. 4, 1696 (2013).

    Article  Google Scholar 

  4. I.J. Beyerlein, N.A. Mara, J.S. Carpenter, T. Nizolek, W.M. Mook, T.A. Wynn, R.J. McCabe, J.R. Mayeur, K. Kang, S.J. Zheng, J. Wang, and M.P. Tresa, J. Mater. Res. 28, 1799 (2013).

    Article  Google Scholar 

  5. J. Wang and A. Misra, Curr. Opin. Solid State Mater. Sci. 15, 20 (2011).

    Article  Google Scholar 

  6. W.D. Sproul, Science 273, 889 (1996).

    Article  Google Scholar 

  7. B.M. Clemens, H. Kung, and S.A. Barnett, MRS Bull. 24, 20 (1999).

    Google Scholar 

  8. A. Misra and H. Kung, Adv. Eng. Mater. 3, 217 (2001).

    Article  Google Scholar 

  9. M.A. Phillips, B.M. Clemens, and W.D. Nix, Acta Mater. 51, 3171 (2003).

    Article  Google Scholar 

  10. A. Misra, J.P. Hirth, and R.G. Hoagland, Acta Mater. 53, 4817 (2005).

    Article  Google Scholar 

  11. J. Wang, R.G. Hoagland, J.P. Hirth, and A. Misra, Acta Mater. 56, 5685 (2008).

    Article  Google Scholar 

  12. R.G. Hoagland, R.J. Kurtz, and C.H. Henager, Scripta Mater. 50, 775 (2004).

    Article  Google Scholar 

  13. J. Wang, R.G. Hoagland, and A. Misra, Scripta Mater. 60, 1067 (2009).

    Article  Google Scholar 

  14. J. Wang, R.G. Hoagland, J.P. Hirth, and A. Misra, Acta Mater. 56, 3109 (2008).

    Article  Google Scholar 

  15. M.J. Demkowicz, J. Wang, and R.G. Hoagland, Interfaces between Dissimilar Crystalline Solids, in Dislocations in Solids, ed. J.P. Hirth (Los Alamos, NM: Materials Science and Technology Division, Los Alamos National Laboratory, 2008), pp. 141–207.

  16. P.M. Derlet, P. Gumbsch, R.G. Hoagland, J. Li, D.L. McDowel, H. Van Swygenhoven, and J. Wang, MRS Bull. 34, 184 (2009).

    Article  Google Scholar 

  17. X.Y. Liu, R.G. Hoagland, J. Wang, T.C. Germann, and A. Misra, Acta Mater. 58, 4549 (2010).

    Article  Google Scholar 

  18. J. Wang, R.G. Hoagland, and A. Misra, Appl. Phys. Lett. 94, 131910 (2009).

    Article  Google Scholar 

  19. J. Wang, A. Misra, R.G. Hoagland, and J.P. Hirth, Acta Mater. 60, 1503 (2012).

  20. S. Shao, J. Wang, A. Misra, and R.G. Hoagland, Sci. Rep. 3, 2448 (2013).

    Google Scholar 

  21. I.J. Beyerlein, J. Wang, K. Kang, S.J. Zheng, and N.A. Mara, Mater. Res. Lett. 1, 89 (2013).

    Article  Google Scholar 

  22. C.A. Bronkhorst, S.R. Kalidindi, and L. Anand, Phil. Trans. R. Soc. Lond. A 341, 443 (1992).

    Article  Google Scholar 

  23. H.M. Mourad and K. Garikipati, Comput. Methods Appl. Mech. Eng. 196, 595 (2006).

    Article  MATH  Google Scholar 

  24. M.R. Tonks, J.F. Bingert, C.A. Bronkhorst, E.N. Harstad, and D.A. Tortorelli, J. Mech. Phys. Solids 57, 1230 (2009).

    Article  MATH  Google Scholar 

  25. H. Wang, P.D. Wu, C.N. Tomé, and J. Wang, Mater. Sci. Eng. A 555, 93 (2012).

    Google Scholar 

  26. H. Wang, P.D. Wu, J. Wang, and C.N. Tomé, Int. J. Plast. 49, 36 (2013).

    Article  Google Scholar 

  27. H. Wang, P.D. Wu, and J. Wang, Int. J. Plast. 47, 49 (2013).

    Article  Google Scholar 

  28. H. Wang, P.D. Wu, C.N. Tomé, and J. Wang, Int. J. Solids Struct. 49, 2155 (2012).

    Article  Google Scholar 

  29. J. Wang, JOM 63 (9), 57 (2011).

    Article  Google Scholar 

  30. N.M. Ghoniem and L.Z. Sun, Phys. Rev. B 60, 128 (1999).

    Article  Google Scholar 

  31. H.M. Zbib, M. Rhee, and J.P. Hirth, Int. J. Mech. Sci. 40, 113 (1998).

    Article  MATH  Google Scholar 

  32. A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T.G. Pierce, and V.V. Bulatov, Model. Simul. Mater. Sci. Eng. 15, 553 (2007).

    Article  Google Scholar 

  33. Z.Q. Wang, I.J. Beyerlein, and R. Lesar, Int. J. Plast. 25, 26 (2009).

    Article  MATH  Google Scholar 

  34. B. Devincre, T. Hoc, and L. Kubin, Science 320, 1745 (2008).

    Article  Google Scholar 

  35. P. Pant, K.W. Schwarz, and S.P. Baker, Acta Mater. 51, 3243 (2003).

    Article  Google Scholar 

  36. S.I. Rao, D.M. Dimiduk, T.A. Parthasarathy, M.D. Uchic, M. Tang, and C. Woodward, Acta Mater. 56, 3245 (2008).

    Article  Google Scholar 

  37. C. Zhou, S. Biner, and R. LeSar, Scripta Mater. 63, 1096 (2010).

    Article  Google Scholar 

  38. C. Zhou, S. Biner, and R. LeSar, Acta Mater. 58, 1565 (2010).

    Article  Google Scholar 

  39. H.D. Espinosa, S. Berbenni, M. Panico, and K.W. Schwarz, Proc. Natl Acad. Sci. U.S.A. 102, 16933 (2005).

    Article  Google Scholar 

  40. H.M. Zbib, C.T. Overman, F. Akasheh, and D.F. Bahr, Int. J. Plast. 27, 1618 (2011).

    Article  MATH  Google Scholar 

  41. J.P. Hirth, R.C. Pond, R.G. Hoagland, X.Y. Liu, and J. Wang, Prog. Mater Sci. 58, 749 (2013).

    Article  Google Scholar 

  42. J. Wang, R.F. Zhang, C.Z. Zhou, I.J. Beyerlein, and A. Misra, J. Mater. Res. 28, 1646 (2013).

    Article  Google Scholar 

  43. J. Wang, R.F. Zhang, C.Z. Zhou, I.J. Beyerlein, and A. Misra, Int. J. Plast. (2013). doi:10.1016/j.ijplas.2013.07.002.

  44. K. Kang, J. Wang, and I.J. Beyerlein, J. Appl. Phys. 111, 53531 (2012).

    Article  Google Scholar 

  45. K. Kang, J. Wang, S.J. Zheng, and I.J. Beyerlein, J. Appl. Phys. 112, 073501 (2012).

    Article  Google Scholar 

  46. M.J. Demkowicz, R.G. Hoagland, and J.P. Hirth, Phys. Rev. Lett. 100, 136102 (2008).

    Article  Google Scholar 

  47. J. Wang, K. Kang, R.F. Zhang, S.J. Zheng, I.J. Beyerlein, and N.A. Mara, JOM 64 (10), 1208 (2012).

    Article  Google Scholar 

  48. R.F. Zhang, J. Wang, I.J. Beyerlein, and T.C. Germann, Scripta Mater. 65, 1022 (2011).

    Article  Google Scholar 

  49. R.F. Zhang, J. Wang, I.J. Beyerlein, A. Misra, and T.C. Germann, Acta Mater. 60, 2855 (2012).

    Article  Google Scholar 

  50. I.J. Beyerlein, J. Wang, and R.F. Zhang, APL Mater. 1, 032112 (2013).

    Article  Google Scholar 

  51. I.J. Beyerlein, J. Wang, and R.F. Zhang, Acta Mater. 61, 7488 (2013).

    Article  Google Scholar 

  52. N. Li, J. Wang, J.Y. Huang, A. Misra, and X. Zhang, Scripta Mater. 63, 363 (2010).

    Article  Google Scholar 

  53. H.J. Chu, J. Wang, I.J. Beyerlein, and E. Pan, Int. J. Plast. 41, 1 (2013).

    Article  Google Scholar 

  54. J. Wang and A. Misra, Curr. Opin. Solid State Mater. Sci. (2013). doi:10.1016/j.cossms.2013.10.003.

Download references

Acknowledgements

The authors acknowledge the support provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. J. W. also acknowledge the support provided by Los Alamos National Laboratory Directed Research and Development projects ER20140450. The authors sincerely appreciate the discussions with Dr. Amit Misra, Profs. J. P. Hirth, and R. G. Hoagland at Los Alamos National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Zhou, C., Beyerlein, I.J. et al. Modeling Interface-Dominated Mechanical Behavior of Nanolayered Crystalline Composites. JOM 66, 102–113 (2014). https://doi.org/10.1007/s11837-013-0808-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0808-8

Keywords

Navigation