Skip to main content

Advertisement

Log in

High-Temperature Refining of Metallurgical-Grade Silicon: A Review

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Among currently known alternatives for renewable energy sources, solar power is generally regarded as having the most potential to satisfy the ever-growing demand. While solar photovoltaic power is a well-established technology, its widespread uptake has been hindered by the prohibitively high price of units and thus electricity. This is due mainly to the high cost of the silicon used to fabricate the devices. This article presents a review of the development of established pyrometallurgical techniques as applied to refining metallurgical silicon to solar grade for the purposes of reducing reliance on expensive traditional silicon feedstock. Four basic high-temperature methods—solvent refining, vaporization, electrorefining, and slag treatment—are described, and the limitations and advantages of each method are presented. It is apparent that these techniques are very useful for removing impurities from silicon, but are often selective and not able to remove all problematic elements. Therefore, refining may need to be as a sequence of steps, targeting specific elements each time, or as novel methods combining multiple techniques simultaneously. Ultimately, the successful approach will have to achieve large-scale production by cost-effective means to replace current methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Despoto, A. El Gammal, B. Fontaine, D. Fraile Montoro, M. Latour, S. Lenoir, G. Masson, and P. Van Buggenhout, Global Market Outlook for Photovoltaics Until 2014 (Brussels: European Photovoltaic Industry Association, 2010).

    Google Scholar 

  2. K.P. Chandra and D.B. Joyce, Sol. Energy Mater. Sol. Cells 74, 77 (2002).

    Article  Google Scholar 

  3. J.H. Aalberts and M.L. Verheijke, Appl. Phys. Lett. 1, 19 (1962).

    Article  Google Scholar 

  4. M.K. Bakhadyrkhanov, B.I. Boltaks, and G.S. Kulikov, Soviet Physics Solid State 12, 144 (1970).

    Google Scholar 

  5. H. Feichtinger and R. Czaputa, Appl. Phys. Lett. 39, 706 (1981).

    Article  Google Scholar 

  6. R.H. Hopkins, Effect of Impurities on Silicon Solar-cell Performance (Las Vegas, Nevada: JPL, 1986).

    Google Scholar 

  7. W. Lin and D.W. Hill, J. Appl. Phys. 54, 1082 (1983).

    Article  Google Scholar 

  8. L. Ottem, Solubility and Thermochemical Data of Oxygen and Carbon in Liquid Alloys of Silicon and Ferrosilicon (Trondheim, Norway: SINTEF, 1993).

    Google Scholar 

  9. H. Sigmund, J. Electrochem. Soc. 129, 2809 (1982).

    Article  Google Scholar 

  10. F.A. Trumbore, Bell Syst. Tech. J. 39, 205 (1960).

  11. I. Obinata and N. Komatsu, Sci. Rep. RITU A-9, 118 (1957).

    Google Scholar 

  12. Ciftja, T.A. Engh, and M. Tangstad, Refining and Recycling of Silicon: A Review (Trondheim: NTNU, 2008).

    Google Scholar 

  13. P.S. Kotval, H.B. Strock, US Patent No. 4,124,410, 1978, Union Carbide Corporation.

  14. P.S. Kotval, H.B. Strock, US Patent No. 4,193,974, 1980, Union Carbide Corporation.

  15. P.S. Kotval, H.B. Strock, US Patent No. 4,193,975, 1980, Union Carbide Corporation.

  16. P.S. Kotval, H.B. Strock, US Patent No. 4,195,067, 1980, Union Carbide Corporation.

  17. J. Gumaste, B. Mohanty, R. Galgali, U. Syamaprasad, B. Nayak, S. Singh, and P. Jena, Sol. Energy Mater. 16, 289 (1987).

    Article  Google Scholar 

  18. T. Miki, K. Morita, and N. Sano, Metall. Mater. Trans. B 27, 937 (1996).

    Article  Google Scholar 

  19. T. Miki, K. Morita, and N. Sano, Metall. Mater. Trans. B 28, 861 (1997).

    Article  Google Scholar 

  20. T. Miki, K. Morita, and N. Sano, Metall. Mater. Trans. B 29, 1043 (1998).

    Article  Google Scholar 

  21. K. Morita and T. Miki, Intermetallics 11, 1111 (2003).

    Article  Google Scholar 

  22. T. Yoshikawa and K. Morita, Sci. Technol. Adv. Mater. 4, 531 (2003).

    Article  Google Scholar 

  23. T. Yoshikawa and K. Morita, J. Electrochem. Soc. 150, G465 (2003).

    Article  Google Scholar 

  24. T. Yoshikawa, K. Arimura, and K. Morita, Metall. Mater. Trans. B 36B, 837 (2005).

    Article  Google Scholar 

  25. T. Yoshikawa and K. Morita, Metall. Mater. Trans. B 36B, 731 (2005).

    Article  Google Scholar 

  26. T. Yoshikawa and K. Morita, J. Phys. Chem. Solids 66, 261 (2005).

    Article  Google Scholar 

  27. T. Yoshikawa, K. Morita, in EPD Congress (TMS, Warrendale, PA, 2005), pp. 549–558.

  28. T. Yoshikawa and K. Morita, J. Cryst. Growth 311, 776 (2009).

    Article  Google Scholar 

  29. T. Yoshikawa, K. Morita, S. Kawanishi, and T. Tanaka, J. Alloys Compd. 490, 31 (2010).

    Article  Google Scholar 

  30. K. Morita and T. Yoshikawa, Trans. Nonferrous Metals Soc. China 21, 685 (2011).

    Article  Google Scholar 

  31. B. Bathey and M.C. Cretella, J. Mater. Sci. 17, 3077 (1982).

    Article  Google Scholar 

  32. T. Shimpo, T. Yoshikawa, and K. Morita, Metall. Mater. Trans. B 35B, 277 (2004).

    Article  Google Scholar 

  33. Y.V. Meteleva-Fischer, Y. Yangb, R. Boom, B. Kraaijveld, and H. Kuntzel, Intermetallics 25, 9 (2012).

    Article  Google Scholar 

  34. G. Inoue, T. Yoshikawa, and K. Morita, High Temp. Mater. Processes 22, 221 (2003).

    Article  Google Scholar 

  35. J.M. Juneja and T.K. Mukherjee, Hydrometallurgy 16, 69 (1986).

    Article  Google Scholar 

  36. A.M. Mitrašinović and T.A. Utigard, Silicon 1, 239 (2009).

    Article  Google Scholar 

  37. A.M. Mitrašinović and T.A. Utigard, Metall. Mater. Trans. B 43B, 379 (2012).

    Google Scholar 

  38. S. Esfahani and M. Barati, Metals Mater. Int. 17, 823 (2011).

    Article  Google Scholar 

  39. S. Esfahani and M. Barati, Metals Mater. Int. 17, 1009 (2011).

    Article  Google Scholar 

  40. E. Bonnier, H. Pastor, J. Driole, Metallurgie, 7, 299 (1965–1966).

  41. J. Driole and E. Bonnier, Metallwiss. Tech. 25, 2 (1971).

    Google Scholar 

  42. Z. Yin, A. Oliazadeh, S. Esfahani, M. Johnston, and M. Barati, Can. Metall. Q. 50, 166 (2011).

    Article  Google Scholar 

  43. T. Ikeda and M. Maeda, ISIJ Int. 32, 635 (1992).

    Article  Google Scholar 

  44. K. Suzuki, K. Sakaguchi, T. Nakagiri, and N. Sano, J. Jpn. Inst. Metals 54, 161 (1990).

    Google Scholar 

  45. J.C.S. Pires, A.F.B. Braga, and P.R. Mei, Sol. Energy Mater. Sol. Cells 79, 347 (2003).

    Article  Google Scholar 

  46. J.C.S. Pires, J. Otubo, A.F.B. Braga, and P.R. Mei, J. Mater. Proc. Technol. 169, 16 (2005).

    Article  Google Scholar 

  47. K. Hanazawa, N. Yuge, and Y. Kato, Mater. Trans. 45, 844 (2004).

    Article  Google Scholar 

  48. H.C. Theuerer, J. Metals 8, 1316–1319 (1956).

    Google Scholar 

  49. D. Morvan, J. Amouroux, M.C. Charpin, and H. Lauvrey, Rev. Phys. Appl. 18, 239 (1983).

    Article  Google Scholar 

  50. K. Suzuki, T. Kumagai, and N. Sano, ISIJ Int. 32, 630 (1992).

    Article  Google Scholar 

  51. T. Ikeda and M. Maeda, Mater. Trans., JIM 37, 983 (1996).

    Google Scholar 

  52. N. Nakamura, H. Baba, Y. Sakaguchi, and Y. Kato, Mater. Trans. 45, 858 (2004).

    Article  Google Scholar 

  53. D. Lynch, JOM 61, 41–48 (2009).

    Article  Google Scholar 

  54. Y. Delannoy, C. Alemany, K.-I. Li, P. Proulx, and C. Trassy, Sol. Energy Mater. Sol. Cells 72, 69 (2002).

    Article  Google Scholar 

  55. C. Alemany, C. Trassy, B. Pateyron, K.-I. Li, Y. Delannoy, Sol. Energy Mater. Sol. Cells 72, 41 (2002).

    Google Scholar 

  56. S. Tsao and S.-S. Lian, Mater. Sci. Forum 475–479, 2595 (2005).

    Article  Google Scholar 

  57. S. Rousseau, M. Benmansour, D. Morvan, and J. Amouroux, Sol. Energy Mater. Sol. Cells 91, 1906 (2007).

    Article  Google Scholar 

  58. S. Magnaval, D. Morvan, J. Amouroux, S.N. Kuok Shy, and S. Dresvin, High Temp. Mater. Proc. 3, 355 (1999).

    Google Scholar 

  59. M. Benmansour, E. Francke, D. Morvan, J. Amouroux, and D. Ballutaud, Thin Solid Films 403–404, 112 (2002).

    Article  Google Scholar 

  60. F. Bourg, S. Pellerin, D. Morvan, J. Amouroux, and J. Chapelle, Sol. Energy Mater. Sol. Cells 72, 361 (2002).

    Article  Google Scholar 

  61. D. Morvan, I. Cazard-Juvernat, and J. Amouroux, J. Mater. Res. 13, 2709 (1998).

    Article  Google Scholar 

  62. S. Darwiche, M. Nikravech, D. Morvan, J. Amouroux, and D. Ballutaud, Sol. Energy Mater. Sol. Cells 91, 195 (2007).

    Article  Google Scholar 

  63. M. Benmansour, S. Rousseau, and D. Morvan, Surf. Coat. Technol. 203, 839 (2008).

    Article  Google Scholar 

  64. B.R. Bathey and M.C. Cretella, J. Mater. Sci. 71, 3077 (1982).

    Article  Google Scholar 

  65. M. Thiagarajan, K. Iyakutti, E. Palaniyandi, and M. Mahendran, Int. J. Quantum Chem. 58, 383 (1996).

    Article  Google Scholar 

  66. Y.Q. Lai, M. Jia, Z.L. Tian, J. Li, J.F. Yan, J.G. Yi, Z.G. Wang, and Y.X. Liu, Metall. Mater. Trans. A 41A, 929 (2010).

    Article  Google Scholar 

  67. R. Monnier and J.C. Giacometti, Helv. Chim. Acta 47, 345 (1964).

    Article  Google Scholar 

  68. R. Monnier, D. Barakat, J.C. Giacometti, US Patent No. 3,254,010, 1966, General Trustee Co. Inc.

  69. R. Monnier, D. Barakat, US Patent No. 3,219,561, 1965, General Trustee Co. Inc.

  70. J.M. Olson and K.L. Carleton, J. Electrochem. Soc. 128, 2698 (1981).

    Article  Google Scholar 

  71. Sharma and T. Mukherjee, Metall. Trans. B 17B, 395 (1986).

    Article  Google Scholar 

  72. X. Zou, H. Xie, Y. Zhai, X. Lang, J. Zhang, in Proceeding of Advanced Materials Research (Shenyang, China, 2012), pp. 697–702.

  73. O.E. Kongstein, C. Wollan, S. Sultana, and G.M. Haarberg, ECS Trans. 3, 357 (2007).

    Article  Google Scholar 

  74. J. Cai, X.T. Luo, G.M. Haarberg, O.E. Kongstein, and S.L. Wang, J. Electrochem. Soc. 159, D155 (2012).

    Article  Google Scholar 

  75. W. Hoopes, F.C. Frary, J. D. Edwards, US Patent No. 1,534,318, 1925, Aluminium Co. of America.

  76. R.A. Gadeau, US Patent No. 2,034,339, 1936, Prod Chim Electro.

  77. E. Olsen and S. Rolseth, Metall. Mater. Trans. B 41B, 295 (2010).

    Article  Google Scholar 

  78. E. Olsen, S. Rolseth, and J. Thonstad, Metall. Mater. Trans. B 41B, 752 (2010).

    Article  Google Scholar 

  79. H. Momokawa and N. Sano, Metall. Trans. B 13B, 643 (1982).

    Article  Google Scholar 

  80. M. Tanahashi, H. Nakahigashi, K. Takeda, C. Yamauchi, in Yazawa Internation Symposium, vol. 1: Thermo and Physicochemical Principles (TMS, Warrendale, PA, 2003), pp. 173–186.

  81. L. Teixira, Y. Tokuda, T. Yoko, and K. Morita, ISIJ Int. 49, 777 (2009).

    Article  Google Scholar 

  82. L. Teixira and K. Morita, ISIJ Int. 49, 783 (2009).

    Article  Google Scholar 

  83. K. Suzuki, N. Sano, in Proceedings of the 10th E.C. Photovoltaic Solar Energy Conference (Kluwer, Dordrecht, 1991), pp. 273–275.

  84. J. Cai, J.T. Li, W.H. Chen, C. Chen, and X.T. Luo, Trans. Nonferrous Metals Soc. China 21, 1402 (2011).

    Article  Google Scholar 

  85. H. Fujiwara, J. Yuan, K. Miyata, E. Ichise, and R. Otsuka, J. Jpn. Metals 60, 65 (1996).

    Google Scholar 

  86. M.D. Johnston and M. Barati, Sol. Energy Mater. Sol. Cells 94, 2085 (2010).

    Article  Google Scholar 

  87. C.H. Yin, B.F. Hu, and X.M. Huang, J. Semicond. 32, 12 (2011).

    Google Scholar 

  88. M. Li, T.A. Utigard, M. Barati, in Proceedings of the Ninth International Conference on Molten Slags, Fluxes and Salts, Beijing, China, 27–30 May 2012.

  89. S. Tabuchi and N. Sano, Metall. Trans. B 15B, 351 (1984).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for the group’s research work from NSERC is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murray D. Johnston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, M.D., Khajavi, L.T., Li, M. et al. High-Temperature Refining of Metallurgical-Grade Silicon: A Review. JOM 64, 935–945 (2012). https://doi.org/10.1007/s11837-012-0384-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0384-3

Keywords

Navigation