Skip to main content
Log in

Novel multi-scale diffusion model for catalytic methane combustion

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A multi-scale model of methane catalytic combustion was built by a series of balance equations and diffusion equations, and these equations were solved through the computational fluid dynamics (CFD) software. The difference between this work and previous model is the diffusion process in catalyst coating was considered. By analyzing the methane conversion, temperature distribution and mass fraction contours of every component, the performance of multi-scale model was compared with that of the pure CFD model without diffusion. The effects of diffusion, methane concentration, flow rate on the methane conversion and temperature distribution of monolithic reactor were also evaluated and discussed by the multi-scale model. The multi-scale model showed better accuracy than the pure CFD model without diffusion process. Different methane concentrations and gas flow rates had enormous effects on the methane conversion and temperature. Therefore, it was beneficial to the reaction process to adjust the methane concentration and gas flow rate appropriately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Li, J. J. Zhang, Z.G. Lei and B.H. Chen, Energy Fuel, 26, 443 (2012).

    Article  CAS  Google Scholar 

  2. J. Hu, R. Hu, R. Ding, J. Chen and Y. Zhang, Catal. Commun., 21, 38 (2012).

    Article  Google Scholar 

  3. G. H. Zhu, J.Y. Han, D.Y. Zemlyanov and F. H. Ribeiro, J. Am. Chem. Soc., 126, 9896 (2004).

    Article  CAS  Google Scholar 

  4. K. M. Santhosh, M. H. Aguirre, A. Weidenkaff and D. Ferri, J. Phys. Chem. C., 114, 9439 (2010).

    Article  Google Scholar 

  5. B. Wang, Z. F. Qin and G. F. Wang, Catal. Lett., 143, 411 (2013).

    Article  CAS  Google Scholar 

  6. Y. G. Zhang, Z. F. Qin and G. F. Wang, Appl. Catal. B-Environ., 129, 172 (2013).

    Article  CAS  Google Scholar 

  7. N. Jodeiri, J. P. Mmbaga and L. Wu, Comput. Chem. Eng., 39, 47 (2012).

    Article  CAS  Google Scholar 

  8. B. H. Yue, R. X. Zhou and X. M. Zheng, Fuel Process. Technol., 8, 728 (2008).

    Article  Google Scholar 

  9. R. F. Hick, H. H. Qi and M. L. Young, J. Catal., 122, 280 (1990).

    Article  Google Scholar 

  10. K. Persson, P.O. Thevenin and K. Jansson, Appl. Catal. A-Gen., 249, 165 (2003).

    Article  CAS  Google Scholar 

  11. L. H. Xiao, K. P. Sun and X. L. Xu, Catal. Commun., 6, 796 (2005).

    Article  CAS  Google Scholar 

  12. F. J. Aires, S. Cadete, I. Kurzina, G.G. Cervantes and J.C. Bertolini, Catal. Today, 117, 518 (2006).

    Article  Google Scholar 

  13. S. Colussi, A. Trovarelli, C. Cristiani and L. Lietti, Catal. Today, 180, 124 (2012).

    Article  CAS  Google Scholar 

  14. A. Ersson, K. Persson and I. K. Adu, Catal. Today, 112, 157 (2006).

    Article  CAS  Google Scholar 

  15. H. Arai, T. Yamada and K. Eguchi, Appl. Catal., 26, 265 (1986).

    Article  CAS  Google Scholar 

  16. I. Rossetti and L. Forni, Appl. Catal. B-Environ., 33, 345 (2001).

    Article  CAS  Google Scholar 

  17. X.G. Ren, J.D. Zheng and Y. J. Song, Catal. Commun., 9, 807 (2008).

    Article  CAS  Google Scholar 

  18. A. J. Zarur and J.Y. Ying, Nature, 403, 65 (2000).

    Article  CAS  Google Scholar 

  19. J. Cheng, H. L. Wang and Z.P. Hao, Catal. Commun., 9, 690 (2008).

    Article  CAS  Google Scholar 

  20. P. Reyes, A. Figueroa, G. Pecchi and J. L. Fierro, Catal. Today, 62, 209 (2000).

    Article  CAS  Google Scholar 

  21. S.R.G. Carrazan, R. Mateos and V. Rivesa, Catal. Today, 112, 161 (2006).

    Article  CAS  Google Scholar 

  22. S. Irandoust and B. Andersson, Monolithic Catalysts for Nonautomobile Applications Catal Rev Sci Eng., 30, 341 (1988).

    Article  CAS  Google Scholar 

  23. S. Su and A. Jenny, Fuel, 85, 1201 (2006).

    Article  CAS  Google Scholar 

  24. P. Marín, M. Hevia, S. Ordóñez and F.V. Díez, Catal. Today, 105, 701 (2005).

    Article  Google Scholar 

  25. S.R. Shabanian, M. Rahimi, A. Amiri, S. Sharifnia and A.A. Alsairafi, Korean J. Chem. Eng., 29, 1531 (2012).

    Article  CAS  Google Scholar 

  26. B. Chalermsinsuwan, D. Gidaspow and P. Piumsomboon, Korean J. Chem. Eng., 30, 963 (2013).

    Article  CAS  Google Scholar 

  27. B. Chalermsinsuwan, T. Thummakul, D. Gidaspow and P. Piumsomboon, Korean J. Chem. Eng., 31, 350 (2014).

    Article  CAS  Google Scholar 

  28. C.H. Hwang and C. E. Lee, Fuel, 83, 987 (2004).

    Article  CAS  Google Scholar 

  29. C. P. Chou, Y. Jyh, H. Greg and S. William, Combus. Sci. Technol., 150, 1: 27 (2000).

    Article  CAS  Google Scholar 

  30. J. J. Chen, L. F. Yan and W.Y. Song, Reac. Kinet. Mech. Catal., 113, 19 (2013).

    Article  Google Scholar 

  31. A. Benedetto, G. Landi and V. Sarli, Catal. Today, 197, 206 (2012).

    Article  Google Scholar 

  32. Y. Zhao, Y. F. Zheng and F. Xin, Chem. Reac. Eng. Technol., 20, 357 (2004).

    CAS  Google Scholar 

  33. J. J. Huang, Z.G. Jia and F.Y. Liu, Industrial Catalysis, 5, 23 (2013).

    Google Scholar 

  34. S. Vaishali, S. Roy and P. L. Mills, Chem. Eng. Sci., 63, 5107 (2008).

    Article  CAS  Google Scholar 

  35. C.R. Wilke, Chem. Eng. Prog., 46, 95 (1950).

    CAS  Google Scholar 

  36. K.R. Rout, J. Solsvik and A.K. Nayak, Chem. Eng. Sci., 66, 4111 (2011).

    Article  CAS  Google Scholar 

  37. K. Huang, S. Lin, J. J. Wang and Z. H. Luo, J. Industrial Eng. Chem., 29, 172 (2015).

    Article  CAS  Google Scholar 

  38. Y. Ozawa, Y. Tochihara, M. Nagai and S. Omi, Catal. Commun., 4, 87 (2003).

    Article  CAS  Google Scholar 

  39. P. Reyes, A. Figueroa, G. Pecchi and J. L.G. Fierro, Catal. Today, 62, 209 (2000).

    Article  CAS  Google Scholar 

  40. S. Guerrero, P. Araya and E. E. Wolf, Appl. Catal. A-Gen., 298, 243 (2006).

    Article  CAS  Google Scholar 

  41. P. Hurtado, S. Ordóñez, S. Herminio and V. Fernando, Appl. Catal. B-Environ., 51, 229 (2004).

    Article  CAS  Google Scholar 

  42. Y.Q. Zhuang, X. Gao, Y. P. Zhu and Z. H. Luo, Powder Technol., 221, 419 (2012).

    Article  CAS  Google Scholar 

  43. X.M. Chen, J. Dai and Z. H. Luo, Particuology, 11, 703 (2013).

    Article  CAS  Google Scholar 

  44. G.Q. Chen, Z. H. Luo and X.Y. Lan, Chem. Eng. J., 228, 352 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., Wang, L., Xu, Y. et al. Novel multi-scale diffusion model for catalytic methane combustion. Korean J. Chem. Eng. 34, 1366–1376 (2017). https://doi.org/10.1007/s11814-017-0037-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0037-x

Keywords

Navigation