Skip to main content
Log in

Numerical simulation of micro-scale catalytic combustion characteristics with detailed chemical kinetic reaction mechanisms of hydrogen/air

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Micro-scale catalytic combustion characteristics with detailed gas phase and surface catalytic reaction mechanisms of hydrogen/air were investigated numerically. Micro-combustion characteristics for different reaction models and the influence of wall thermal conductivity, inlet velocity, tube diameter on surface catalytic combustion reaction were discussed. The computational results indicate that the surface catalytic combustion restrains the gas phase combustion. The gas phase reaction inhibition by the catalyst is sensitive to thermal boundary condition at the wall. The gas phase reaction cannot be ignored inside a micro-scale catalyst combustor for most conditions. The higher wall temperature gradient for low wall thermal conductivity will promote the gas phase combustion shift upstream and will result in a higher temperature distribution. The micro-tube can be divided into two regions. The upstream region is dominated by the surface catalytic reaction and the downstream region is dominated by the gas phase combustion. With increasing inlet velocity, the region dominated by surface catalytic reactions expanded downstream and finally occupied the whole micro-tube. The temperature of the flame core decreases with the decrease of tube diameter. Decreasing the tube diameter will enhance the surface catalytic reactions. Inside a micro-catalytic combustor, the effect of surface catalytic reaction on gas phase reaction can be divided into three characteristic reaction types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chao CYH, Hui KS, Kong W, Cheng P, Wang JH (2007) Analytical and experimental study of premixed methane-air flame propagation in narrow channels. Int J Heat Mass Transf 50:1302–1313

    Article  CAS  Google Scholar 

  2. Zhang YS, Zhou JH, Yang WJ, Liu MS, Cen KF (2007) Effects of hydrogen addition on methane catalytic combustion in a microtube. Int J Hydrogen Energy 32:1286–1293

    Article  CAS  Google Scholar 

  3. Li JW, Zhong BJ (2008) Experimental investigation on heat loss and combustion in methane/oxygen micro-tube combustor. Appl Therm Eng 28:707–716

    Article  CAS  Google Scholar 

  4. Wang Y, Zhou ZJ, Yang WJ, Zhou JH, Liu JZ, Wang ZH, Cen KF (2011) Instability of flame in micro-combustor under different external thermal environment. Exp Thermal Fluid Sci 35:1451–1457

    Article  Google Scholar 

  5. Zhong BJ, Yang F, Yang QT (2012) Catalytic combustion of n-C4H10 and DME in swiss-roll combustor with porous ceramics. Combust Sci Technol 184:573–584

    Article  CAS  Google Scholar 

  6. Shih HY, Huang YC (2009) Thermal design and model analysis of the Swiss-roll recuperator for an innovative micro gas turbine. Appl Therm Eng 29:1493–1499

    Article  Google Scholar 

  7. Tsai BJ, Wang YL (2009) A novel Swiss-Roll recuperator for the microturbine engine. Appl Therm Eng 29:216–223

    Article  CAS  Google Scholar 

  8. Chen CH, Ronney PD (2011) Three-dimensional effects in counterflow heat-recirculating combustors. Proc Combust Inst 33:3285–3291

    Article  CAS  Google Scholar 

  9. Park JH, Lee SI, Wu H, Kwon OC (2012) Thermophotovoltaic power conversion from a heat-recirculating micro-emitter. Int J Heat Mass Transf 55:4878–4885

    Article  CAS  Google Scholar 

  10. Che Z, Wong TN, Nguyen NT (2012) Heat transfer enhancement by recirculating flow within liquid plugs in microchannels. Int J Heat Mass Transf 55:1947–1956

    Article  CAS  Google Scholar 

  11. Shirsat V, Gupta AK (2011) A review of progress in heat recirculating meso-scale combustors. Appl Energy 88:4294–4309

    Article  Google Scholar 

  12. Shirsat V, Gupta AK (2011) Performance characteristics of methanol and kerosene fuelled meso-scale heat-recirculating combustors. Appl Energy 88:5069–5082

    Article  CAS  Google Scholar 

  13. Kim JH, Kwon OC (2011) A micro reforming system integrated with a heat-recirculating micro-combustor to produce hydrogen from ammonia. Int J Hydrogen Energy 36:1974–1983

    Article  CAS  Google Scholar 

  14. Kurdyumov VN, Matalon M (2011) Analysis of an idealized heat-recirculating microcombustor. Proc Combust Inst 33:3275–3284

    Article  CAS  Google Scholar 

  15. Hsueh CY, Chu HS, Yan WM, Leu GC, Tsai JI (2011) Three-dimensional analysis of a plate methanol steam micro-reformer and a methanol catalytic combustor with different flow channel designs. Int J Hydrogen Energy 36:13575–13586

    Article  CAS  Google Scholar 

  16. Jin JK, Kwon SJ (2010) Fabrication and performance test of catalytic micro-combustors as a heat source of methanol steam reformer. Int J Hydrogen Energy 35:1803–1811

    Article  CAS  Google Scholar 

  17. Hsueh CY, Chu HS, Yan WM, Chen CH (2010) Numerical study of heat and mass transfer in a plate methanol steam micro reformer with methanol catalytic combustor. Int J Hydrogen Energy 35:6227–6238

    Article  CAS  Google Scholar 

  18. Federici JA, Vlachos DG (2011) Experimental studies on syngas catalytic combustion on Pt/Al2O3 in a microreactor. Combust Flame 158:2540–2543

    Article  CAS  Google Scholar 

  19. Federici JA, Wetzel ED, Geil BR, Vlachos DG (2009) Single channel and heat recirculation catalytic microburners: an experimental and computational fluid dynamics study. Proc Combust Inst 32:3011–3018

    Article  CAS  Google Scholar 

  20. Fan Y, Suzuki Y, Kasagi N (2009) Experimental study of micro-scale premixed flame in quartz channels. Proc Combust Inst 32:3083–3090

    Article  CAS  Google Scholar 

  21. Ye R, Yu YG, Cao YJ (2013) Analysis of micro-scale flame Structure of AP/HTPB base bleed propellant combustion. Def Technol 9:695–702

    Google Scholar 

  22. Wang Y, Zhou ZJ, Yang WJ, Zhou JH, Liu JZ, Wang ZH, Cen KF (2010) Combustion of hydrogen-air in micro combustors with catalytic Pt layer. Energy Convers Manag 51:1127–1133

    Article  CAS  Google Scholar 

  23. Zhou JH, Wang Y, Yang WJ, Liu JZ, Wang ZH, Cen KF (2009) Combustion of hydrogen-air in catalytic micro-combustors made of different material. Int J Hydrogen Energy 34:3535–3545

    Article  CAS  Google Scholar 

  24. Yan YF, Tang WM, Zhang L, Pan WL, Yang ZQ, Chen YR, Lin JY (2014) Numerical simulation of the effect of hydrogen addition fraction on catalytic micro-combustion characteristics of methane-air. Int J Hydrogen Energy 39:1864–1873

    Article  CAS  Google Scholar 

  25. Yan YF, Pan WL, Zhang L, Tang WM, Yang ZQ, Tang Q, Lin JY (2013) Numerical study on combustion characteristics of hydrogen addition into methane-air mixture. Int J Hydrogen Energy 38:13463–13470

    Article  CAS  Google Scholar 

  26. Zhou JH, Wang Y, Yang WJ, Liu JZ, Wang ZH, Cen KF (2009) Improvement of micro-combustion stability through electrical heating. Appl Therm Eng 29:2373–2378

    Article  Google Scholar 

  27. Maruta K (2011) Micro and mesoscale combustion. Proc Combust Inst 33:125–150

    Article  CAS  Google Scholar 

  28. Ju Y, Maruta K (2011) Microscale combustion: technology development and fundamental research. Prog Energy Combust Sci 37:669–715

    Article  CAS  Google Scholar 

  29. Kamijo T, Suzuki Y, Kasagi N, Okamasa T (2009) High-temperature micro catalytic combustor with Pd/nano-porous alumina. Proc Combust Inst 32:3019–3026

    Article  CAS  Google Scholar 

  30. Karagiannidis S, Mantzaras J (2010) Numerical investigation on the start-up of methane-fueled catalytic microreactors. Combust Flame 157:1400–1413

    Article  CAS  Google Scholar 

  31. Deutschmann O, Tischer S, leditzsch S, Janardhanan VM, Correa C, Chatterjee D, Mladenov N, Mihn HD, Karadeniz H (2014) DETCHEM Software package, 2.5 ed., www.detchem.com, Karlsruhe, 2013; Accessed April 2014

  32. Hua J, Wu M, Kumar K (2005) Numerical simulation of the combustion of hydrogen-air mixture in micro-scaled chambers. Part II: CFD analysis for a micro-combustor. Chem Eng Sci 60:3507–3515

    Article  CAS  Google Scholar 

  33. Sen I, Avci AK (2014) Simulation of exhaust gas reforming of propane in a heat exchange integrated microchannel reactor. Int J Hydrogen Energy 39:844–852

    Article  CAS  Google Scholar 

  34. Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  35. Perry RH, Green DW (1997) Perry’s chemical engineers’ handbook, 7th edn. McGraw-Hill, New York

    Google Scholar 

  36. Konnov AA (2008) Remaining uncertainties in the kinetic mechanism of hydrogen combustion. Combust Flame 152:507–528

    Article  CAS  Google Scholar 

  37. Burcat A, Ruscic B (2014) Third millennium ideal gas and condensed phase thermochemical database for combustion (with updates from active thermochemical tables). ANL-05/20 and TAE 960 Technion-IIT, Aerospace Engineering, and Argonne National Laboratory, Chemistry Division, Division, September 2005; http://www.osti.gov/scitech/biblio/925269; Accessed April 2014

  38. Ruscic B, Pinzon RE, Morton ML, Srinivasan NK, Su MC, Sutherland JW, Michael JV (2006) Active thermochemical tables: accurate enthalpy of formation of hydroperoxyl radical, HO2. J Phys Chem A 110:6592–6601

    Article  CAS  Google Scholar 

  39. Deutschmann O, Schmidt R, Behrendt F, Warnatz J (1996) Numerical modeling of catalytic ignition. Symp (Int) Combust 26:1747–1754

    Article  Google Scholar 

  40. Appari S, Janardhanan V, Bauri R, Jayanti S, Deutschmann O (2014) A detailed kinetic model for biogas steam reforming on Ni and catalyst deactivation due to sulfur poisoning. Appl Catal A 471:118–125

    Article  CAS  Google Scholar 

  41. Brack W, Heine B, Birkhold F, Kruse M, Schoch G, Tischer S, Deutschmann O (2014) Kinetic modeling of urea decomposition based on systematic thermogravimetric analysis of urea and its most important by-products. Chem Eng Sci 106:1–8

    Article  CAS  Google Scholar 

  42. Norton DG, Vlachos DG (2004) A CFD study of propane/air microflame stability. Combust Flame 138:97–107

    Article  CAS  Google Scholar 

  43. Choi WY, Kwon SJ, Shin HD (2008) Combustion characteristics of hydrogen-air premixed gas in a sub-millimeter scale catalytic combustor. Int J Hydrogen Energy 33:2400–2408

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Yan, L. & Song, W. Numerical simulation of micro-scale catalytic combustion characteristics with detailed chemical kinetic reaction mechanisms of hydrogen/air. Reac Kinet Mech Cat 113, 19–37 (2014). https://doi.org/10.1007/s11144-014-0719-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0719-x

Keywords

Navigation