Skip to main content
Log in

Comparisons of particle cluster diameter and concentration in circulating fluidized bed riser and downer using computational fluid dynamics simulation

  • Polymer, Industrial Chemistry, Fluidization, Particle Technology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The information of particle cluster dynamics is necessary for improving the performance of a circulating fluidized bed system. The main objective of this study is to compare the particle cluster diameters and concentrations from computational fluid dynamics simulation results between circulating fluidized bed riser and downer. The calculation methodologies are based on the concept of kinetic theory of granular flow and statistics. The mathematical model was verified by using the experimental dataset from literature and used for computing the particle cluster dynamics. In the circulating fluidized bed riser and downer, a dense and dilute core-annulus flow structures were obtained, respectively. The particle cluster in the circulating fluidized bed riser possessed more heterogeneity movements than that in the circulating fluidized bed downer. This can be explained by the system flow direction. About the particle cluster dynamics, the particle cluster diameters and concentrations in the circulating fluidized bed riser were higher than the ones in the downer. The calculated values were comparable to the empirical correlations. This confirms the validity of the calculation methodologies. Particle cluster dynamics and its example application inside circulating fluidized bed riser and downer were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Benyahia, H. Arastoopour, T. M. Knowlton and H. Massah, Powder Technol., 112, 24 (2000).

    Article  CAS  Google Scholar 

  2. Y. Cheng, C. Wu, J. Zhu, F. Wei and Y. Jin, Powder Technol., 183, 364 (2008).

    Article  CAS  Google Scholar 

  3. B. Chalermsinsuwan, P. Kuchonthara and P. Piumsomboon, Chem. Eng. Process., 49, 1144 (2010).

    Article  CAS  Google Scholar 

  4. B. Chalermsinsuwan, P. Piumsomboon and D. Gidaspow, Chem. Eng. Sci., 64, 1212 (2009).

    Article  CAS  Google Scholar 

  5. T. McKeen and T. Pugsley, Powder Technol., 129, 139 (2003).

    Article  CAS  Google Scholar 

  6. J. Wang, W. Ge and J. Li, Chem. Eng. Sci., 63, 1553 (2008).

    Article  CAS  Google Scholar 

  7. M. T. Shah, R. P. Utikar, M. O. Tade, V. K. Pareek and G. M. Evans, Chem. Eng. Sci., 66, 3291 (2011).

    Article  CAS  Google Scholar 

  8. D. Gidaspow and J. Veeraya, J. Power Sources, 166, 400 (2007).

    Article  CAS  Google Scholar 

  9. O. Levenspiel, Chemical reaction engineering, John Wiley & Sons, New York (1999).

    Google Scholar 

  10. R. W. Breault, Powder Technol., 163, 9 (2006).

    Article  CAS  Google Scholar 

  11. M. Kashyap and D. Gidaspow, Powder Technol., 203, 40 (2010).

    Article  CAS  Google Scholar 

  12. B. Chalermsinsuwan, P. Piumsomboon and D. Gidaspow, Chem. Eng. Sci., 64, 1195 (2009).

    Article  CAS  Google Scholar 

  13. K. Tuzla, A. K. Sharma, J. C. Chen, T. Schiewe, K. E. Wirth and O. Molerus, Powder Technol., 100, 166 (1998).

    Article  CAS  Google Scholar 

  14. E. Helland, R. Occelli and L. Tadrist, Int. J. Multiphas. Flow, 28, 199 (2002).

    Article  CAS  Google Scholar 

  15. J. X. Zhu, Z. Q. Yu, Y. Jin, J. R. Grace and A. Issangya, Can. J. Chem. Eng., 73, 662 (1995).

    Article  CAS  Google Scholar 

  16. S. V. Manyele, J. H. Parssinen and J. X. Zhu, Chem. Eng. J., 88, 151 (2002).

    Article  CAS  Google Scholar 

  17. R. W. Breault, C. J. Ludlow and P. C. Yue, Powder Technol., 149, 68 (2005).

    Article  CAS  Google Scholar 

  18. J. W. Chew, R. Hays, J. G. Findlay, T. M. Knowlton, S. B. R. Karri, R. A. Cocco and C. M. Hrenya, Chem. Eng. Sci., 68, 72 (2012).

    Article  CAS  Google Scholar 

  19. J. Yerushalmi, N. T. Cankurt, D. Geldart and B. Liss, AIChE Symp. Ser., 74, 1 (1976).

    Google Scholar 

  20. D. Gidaspow, Y. P. Tsuo and K. M. Luo, Computed and experimental cluster formation and velocity profiles in circulating fluidized beds, Fluidization IV, Alberta, Canada (1989).

  21. M. Horio and H. Kuroki, Chem. Eng. Sci., 49, 2413 (1994).

    Article  CAS  Google Scholar 

  22. M. Tartan and D. Gidaspow, AIChE J., 50, 1760 (2004).

    Article  CAS  Google Scholar 

  23. J. Jung, D. Gidaspow and I. K. Gamwo, Ind. Eng. Chem. Res., 44, 1329 (2005).

    Article  CAS  Google Scholar 

  24. J. Xu and J. X. Zhu, Chem. Eng. J., 168, 376 (2011).

    Article  CAS  Google Scholar 

  25. M. H. Zhang, K. W. Chu, F. Wei and A. B. Yu, Powder Technol., 184, 151 (2008).

    Article  CAS  Google Scholar 

  26. C. Soong, K. Tuzla and J. Chen, Identification of particle clusters in circulating fluidized bed, Circulating Fluidized Bed Technology Vol. IV, New York, USA (1995).

  27. A. Sharma, K. Tuzla, J. Matsen and J. Chen, Powder Technol., 111, 114 (2000).

    Article  CAS  Google Scholar 

  28. L. C. Gómez, R. C. da Silva, H. A. Navarro and F. E. Milioli, Appl. Math. Model., 32, 327 (2007).

    Article  Google Scholar 

  29. D. Gidaspow, Multiphase flow and fluidization: Continuum and kinetic theory description, Academic Press, Boston (1994).

    Google Scholar 

  30. R. W. Breault, Powder Technol., 220, 79 (2012).

    Article  CAS  Google Scholar 

  31. C. Guenther and R. Breault, Powder Technol., 173, 163 (2007).

    Article  CAS  Google Scholar 

  32. M. Lints and L. R. Glicksman, AIChE Symp. Ser., 89, 35 (1993).

    Google Scholar 

  33. B. Zou, H. Li, Y. Xia and X. Ma, Powder Technol., 78, 173 (1994).

    Article  CAS  Google Scholar 

  34. W. K. Gu and J. C. Chen, A model for solid concentration in circulating fluidized beds, Fluidization X., Durango, Colorado, USA (1998).

  35. A. T. Harris, J. F. Davidson and R. B. Thorpe, Powder Technol., 127, 128 (2002).

    Article  CAS  Google Scholar 

  36. T. Knowlton, D. Geldart, J. Masten and D. King, Comparison of CFB hydrodynamic models, PSRI Challenge Problem Presented at the Eighth International Fluidization Conference, Tours, France (1995).

  37. C. Cao and H. Weinstein, AIChE J., 46, 515 (2000).

    Article  CAS  Google Scholar 

  38. Fluent Inc., Fluent 6.2 User’s Guide, Fluent Inc., Lebanon (2005).

    Google Scholar 

  39. B. Chalermsinsuwan, T. Chanchuey, W. Buakhao, D. Gidaspow and P. Piumsomboon, Chem. Eng. J., 189–190, 313 (2012).

    Google Scholar 

  40. B. Sun and D. Gidaspow, Ind. Eng. Chem. Res., 38, 787 (1999).

    Article  CAS  Google Scholar 

  41. N. Yang, W. Wang, W. Ge and J. Li, Chem. Eng. J., 96, 71 (2003).

    Article  CAS  Google Scholar 

  42. B. Chalermsinsuwan, P. Kuchonthara and P. Piumsomboon, Chem. Eng. Process., 48, 165 (2009).

    Article  CAS  Google Scholar 

  43. S. Benyahia, H. Arastoopour and T. M. Knowlton, Chem. Eng. Comm., 189, 510 (2009).

    Article  Google Scholar 

  44. P. C. Johnson and R. Jackson, J. Fluid Mech., 176, 67 (1987).

    Article  CAS  Google Scholar 

  45. V. Jiradilok, D. Gidaspow and R. W. Breault, Chem. Eng. Sci., 62, 3397 (2007).

    Article  CAS  Google Scholar 

  46. W. C. Yang, Handbook of fluidization and fluid-particle systems, Marcel Dekker, Inc., New York (2003).

    Book  Google Scholar 

  47. Y. Bolkan, F. Berruti, J. Zhu and B. Milne, Powder Technol., 132, 85 (2003).

    Article  CAS  Google Scholar 

  48. M. H. Zhang, Z. Qian, H. Yu and F. Wei, Powder Technol., 129, 46 (2003).

    Article  CAS  Google Scholar 

  49. Y. Zhao, Y. Ding, C. Wu and Y. Cheng, Powder Technol., 199, 2 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjapon Chalermsinsuwan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chalermsinsuwan, B., Gidaspow, D. & Piumsomboon, P. Comparisons of particle cluster diameter and concentration in circulating fluidized bed riser and downer using computational fluid dynamics simulation. Korean J. Chem. Eng. 30, 963–975 (2013). https://doi.org/10.1007/s11814-012-0216-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0216-8

Key words

Navigation