Skip to main content
Log in

X-ray absorption spectroscopies of Mg-Al-Ni hydrotalcite like compound for explaining the generation of surface acid sites

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Hydrotalcite-like compound containing metal cations such as Mg2+, Al3+ and Ni2+ was characterized using Ni K-edge EXAFS and in situ Ni K-edge XANES techniques for clarifying its bonding environment around Ni2+ sites and structure changes during calcination from room temperature to 550 °C, respectively. At the fixed molar ratio of Mg/Ni/Al of 2/1/1, the results obtained from EXAFS analysis showed a slight blue shift before and after the calcination at 550 °C and a reduction in white line peak; the best fits of the two samples revealed tiny change in coordination number about 7 for Ni-O path but considerable difference for Ni-Mg(Al) path from about 4.5 to 9.5, confirming a modification from brucite like to mixed oxide structure. On the other hand, bond distances of the Ni-O and Ni-Mg paths nearly fixed at about 2.06 Å to 3.0 Å reflected stability of the cationic bond order on each plane, but partial collapse and decomposition of the interlayer formed by water molecules and anion CO 2−3 after the calcination. Linear combination fit extracted from the in situ Ni K-edge XANES also confirmed the changes along with the calcination such as slow and fast decreases of brucite fraction at 150 °C and 330 °C, respectively, in corresponding to the mixed oxide fraction increases. The achieved bonding structures were also applied to explain acid-base occurrence of the hydrotalcite-like material, especially the acid sites generated by different static charges along with the bonds. The explanation was illustrated by NH3-TPD method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Cavani, F. Trifiro and A. Vaccari, Catal. Today, 11, 173 (1991).

    Article  CAS  Google Scholar 

  2. Q. Wang, H. Huang T., Z. Guo, L. Chen, Y. Liu, J. Chang, Z. Zhong, J. Luo and A. Borgna, Appl. Clay Sci., 55, 18 (1991).

    Article  Google Scholar 

  3. S. Albertazzi, F. Basile and A. Vaccari, Interface Sci. Technol., 1, 496 (2004).

    Article  CAS  Google Scholar 

  4. S. Casenave, H. Martinez, C. Guimon, A. Auroux, V. Hulea, A. Cordoneanu and E. Dumitriu, Thermochim. Acta, 379, 85 (2001).

    Article  CAS  Google Scholar 

  5. J. Yang and J. Kim, Korean J. Chem. Eng., 23 (1), 77 (2006).

    Article  CAS  Google Scholar 

  6. M. Khitous, Z. Salem and D. Halliche, Korean J. Chem. Eng., 33 (2), 638 (2016).

    Article  CAS  Google Scholar 

  7. O. Kikhtyanin, L. Hora and D. Kubicka, Catal. Commun., 58, 89 (2015).

    Article  CAS  Google Scholar 

  8. A. Fonseca L., J. David A. B. and E. Moreira A., Appl. Catal. A: Gen., 388, 77 (2010).

    Article  Google Scholar 

  9. A. Romero, M. Jobbagy, M. Laborde, G. Baronetti and N. Amadeo, Appl. Catal. A: Gen., 470, 398 (2014).

    Article  CAS  Google Scholar 

  10. J. Yu, J. Li, H. Wei, J. Zheng, H. Su and X. Wang, J. Mol. Catal. A: Chem., 395, 128 (2014).

    Article  CAS  Google Scholar 

  11. J. Zhang, S. Wu, Y. Liu and B. Li, Catal. Commun., 35, 23 (2013).

    Article  Google Scholar 

  12. J. G. Na, B. E. Yi, J. N. Kim, K. B. Yi, S. Y. Park, J. H. Park, J. N. Kim and C. H. Ko, Catal. Today, 156, 44 (2010).

    Article  CAS  Google Scholar 

  13. J. G. Na, J. K. Han, Y. K. Oh, J. H. Park, T. S. Jung, S. S. Han, H. C. Yoon, S. H. Chung, J. N. Kim and C. H. Ko, Catal. Today, 185, 313 (2012).

    Article  CAS  Google Scholar 

  14. H. S. Roh, I. H. Eum, D. W. Jeong, B. E. Yi, J. G. Na and C. H. Ko, Catal. Today, 164, 457 (2011).

    Article  CAS  Google Scholar 

  15. H. K. D. Nguyen, V. V. Pham and H. T. Do, Catal. Lett., 146 (2016), DOI:10. 1007/s10562-016-1873-8.

    Google Scholar 

  16. W. Gac, Appl. Surface Sci., 257, 2875 (2011).

    Article  CAS  Google Scholar 

  17. K. Tanabe, Solid acids and bases: Their catalytic properties, Kodansha Ltd. (1970).

    Book  Google Scholar 

  18. H. K. D. Nguyen and T. D. Nguyen, J. Porous Mater. (2016), DOI:10.1007/s10934-016-0279-8.

    Google Scholar 

  19. M. Bellotto, B. Rebours, O. Clause, J. Lynch, D. Bazin and E. Elkaim, J. Phys. Chem., 100, 8527 (1996).

    Article  CAS  Google Scholar 

  20. J. Rehr, J. Kas, M. Prange, A. Sorini, Y. Takimoto and F. Vila, Comptes Rendus Physique, 10, 548 (2009).

    Article  CAS  Google Scholar 

  21. G. Sheng, S. Yang, J. Sheng, J. Hu, X. Tan and X. Wang, Environ. Sci. Technol., 45, 7718 (2011).

    Article  CAS  Google Scholar 

  22. R. T. Downs, K. L. Bartelmehs and G. V. Gibbs, American Mineralogist, 78, 1104 (1993).

    CAS  Google Scholar 

  23. C. Enrique D., J. Gallego, F. Mondragon, S Moreno and R. Molina, Fuel, 89, 592 (2010).

    Article  Google Scholar 

  24. L. Obalova, M. Valaskova, F. Kovanda, Z. Lacny and K. Kolinova, Chem. Papers, 58, 33 (2004).

    CAS  Google Scholar 

  25. K. Tanabe, M. Misono, Y. Ono and H. Hattori, Studies in Surface Science and Catalysis, 51 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Khanh Dieu Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.K.D., Nguyen, T.D., Hoang, D.N. et al. X-ray absorption spectroscopies of Mg-Al-Ni hydrotalcite like compound for explaining the generation of surface acid sites. Korean J. Chem. Eng. 34, 314–319 (2017). https://doi.org/10.1007/s11814-016-0285-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0285-1

Keywords

Navigation