Skip to main content
Log in

Sorption of Cr(VI) by MgAl-NO3 hydrotalcite in fixed-bed column: Experiments and prediction of breakthrough curves

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study describes the sorption of Cr(VI) by MgAl-NO3 hydrotalcite in a fixed-bed column. The sorbent was prepared via coprecipitation method and characterized by XRD, FTIR, BET surface area and pH zpc . The effects of operating parameters such as bed height, flow rate and inlet concentration were investigated in continuous mode. As a result, the exhaustion time increased with the increase of bed height, decrease of flow rate and inlet concentration. A mathematical model based on the constant pattern theory and the Freundlich isotherm was applied to predict the experimental data, and to evaluate the model parameters of the fixed-bed column. The developed model describes well the breakthrough curves at various operating conditions. The calculated volumetric mass transfer coefficient K L a depends directly on these conditions. K L a increased with increasing flow rate and inlet concentration, while remained almost constant with varying bed height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Demirbas, M. Kobya, E. Senturk and T. Ozkan, Water SA, 30, 533 (2004).

    Article  CAS  Google Scholar 

  2. R. A. Goyer and M.A. Mehlman, Advances in Modern Toxicology: Toxicology of Trace Elements, John Wiley & Sons, New York (1977).

    Google Scholar 

  3. B. L. Carson, H.V. Ellis and J. L. McCann, Toxicology and Biological Monitoring of Metals in Humans, Lewis Publishers, Chelsea, Michigan (1986).

    Google Scholar 

  4. Environmental Protection Agency (EPA), Cincinnati, Ohio, Environmental pollution control alternatives: Drinking Water Treatment for Small Communities, EPA/625/5-90/025, California (1990).

    Google Scholar 

  5. W. J. McLay and F. P. Reinhard, Met. Finish., 98, 817 (2000).

    Article  Google Scholar 

  6. B.A. Shah, C. B. Mistry and A.V. Shah, Micropor. Mesopor. Mater., 196, 223 (2014).

    Article  CAS  Google Scholar 

  7. W. Daoud, T. Ebadi and A. Fahimifar, Korean J. Chem. Eng., 32(6), 1119 (2015).

    Article  CAS  Google Scholar 

  8. S.A. Idris, K.M. Alotaibi, T.A. Peshkur, P. Anderson, M. Morris and L. T. Gibson, Micropor. Mesopor. Mater., 165, 99 (2013).

    Article  CAS  Google Scholar 

  9. Q. Liu, B. Yang, L. Zhang and R. Huang, Korean. J. Chem. Eng., 32(7), 1314 (2015).

    Article  CAS  Google Scholar 

  10. T. Kameda, E. Kondo and T. Yoshioka, Sep. Purif. Technol., 122, 12 (2014).

    Article  CAS  Google Scholar 

  11. H. Fida, S. Guo and G. Zhang, J. Colloid. Interf. Sci., 442, 30 (2015).

    Article  CAS  Google Scholar 

  12. L. Sun, Z. Yuan, W. Gong, L. Zhang, Z. Xu, G. Su and D. Han, Appl. Surf. Sci., 328, 606 (2015).

    Article  CAS  Google Scholar 

  13. M. Salman, M. Athar, U. Farooq, H. Nazir, A. Noor and S. Nazir, Korean J. Chem. Eng., 30(6), 1257 (2013).

    Article  CAS  Google Scholar 

  14. K. H. Goh, T.T. Lim and Z. L. Dong, Water. Res., 42, 1343 (2008).

    Article  CAS  Google Scholar 

  15. A. Ookubo, K. Ooi and H. Hayashi, Langmuir, 9, 1418 (1993).

    Article  CAS  Google Scholar 

  16. K. Xing, H. Z. Wang, L. G. Guo, W.D. Song and Z. P. Zhao, Colloid. Surface. A., 328, 15 (2008).

    Article  CAS  Google Scholar 

  17. S. L. Wang, C. H. Liu, M. K. Wang, Y.H. Chung and P. N. Chiang, Appl. Clay. Sci., 43, 79 (2009).

    Article  CAS  Google Scholar 

  18. K. Yang, L. Yan, Y. Yang, S. Yu, R. Shan, H. Yu, B. Zhu and B. Du, Sep. Purif. Technol., 124, 36 (2014).

    Article  CAS  Google Scholar 

  19. P. Koilraj and S. Kannan, Chem. Eng. J., 234, 406 (2013).

    Article  CAS  Google Scholar 

  20. T. Hongo, H. Wakasa and A. Yamazaki, Mater. Sci-Poland., 29, 86 (2011).

    Article  CAS  Google Scholar 

  21. V. Srinivasa, P. Prasanna and K. Vishnu, Solid. State. Sci., 10, 260 (2008).

    Article  Google Scholar 

  22. R. Tovar-Gómez, M.R. Moreno-Virgen, J.A. Dena-Aguilar, V. Hernández-Montoya, A. Bonilla-Petriciolet and M. A. MontesMorán, Chem. Eng. J., 228, 1098 (2013).

    Article  Google Scholar 

  23. D. Mowla, G. Karimi and K. Salehi, Chem. Eng. J., 218, 116 (2013).

    Article  CAS  Google Scholar 

  24. S.M.A. Guelli, U. de Souza, L.C. Peruzzo and A. A. Ulson de Souza, Appl. Math. Model., 32, 1711 (2008).

    Article  Google Scholar 

  25. S. Singha and U. Sarkar, Korean J. Chem. Eng., 32(1), 20 (2015).

    Article  CAS  Google Scholar 

  26. R. M. Clark, Environ. Sci. Technol., 21, 573 (1987).

    Article  CAS  Google Scholar 

  27. G. Bohart and E. Q. Adams, J. Am. Chem. Soc., 42, 523 (1920).

    Article  CAS  Google Scholar 

  28. C. Faur, A. Cogunaud, G. Dreyfus and P. L. Cloirec, Chem. Eng. J., 145, 7 (2008).

    Article  CAS  Google Scholar 

  29. Z. Aksu and F. Gönen, Sep. Purif. Technol., 29, 205 (2006).

    Article  Google Scholar 

  30. A. Goshadrou and A. Moheb, Desalination, 269, 170 (2011).

    Article  CAS  Google Scholar 

  31. C. Escudero, J. Poch and I. Villaescusa, Chem. Eng. J., 217, 129 (2013).

    Article  CAS  Google Scholar 

  32. Y. A. Alhamed, J. Hazard. Mater., 170, 763 (2009).

    Article  CAS  Google Scholar 

  33. G. Vazquez, R. Alonso, S. Freire, J. G. Alvarez and G. Antorrena, J. Hazard. Mater., B 133, 61 (2006).

    Article  CAS  Google Scholar 

  34. J. J. Carberry and M. M. Wendel, AIChE J., 9, 129 (1963).

    Article  CAS  Google Scholar 

  35. T. Sherwood and R. Pigford, Mass Transfer, McGraw-Hill, New York (1975).

    Google Scholar 

  36. W. E. Ranz and W.R. Marshall, Chem. Eng. Prog., 48, 173 (1952).

    CAS  Google Scholar 

  37. L. Lv, Y. Zhang, K. Wang, A.K. Ray and X.S. Zhao, J. Colloid. Interf. Sci., 325, 57 (2008).

    Article  CAS  Google Scholar 

  38. J.M. Coulson and J. F. Richardson, Chemical Engineering, vol. 2, in: J.R. Buckhurst (Ed.), fifth ed., Particle Technology and Separation Processes, London, New York (2002).

  39. D.M. Ruthven, Principles of adsorption and adsorption processes, Wiley, New York (1984).

    Google Scholar 

  40. Q. Yang, J. Zhang, Q. Yang, X. Tang, Y. Yu and G. Yang, Trans. Tianjin Univ., 17, 51 (2011).

    Article  CAS  Google Scholar 

  41. L. Y. Tian, W. Ma and M. Han, Chem. Eng. J., 156, 134 (2010).

    Article  CAS  Google Scholar 

  42. APHA, Standard Methods for the Examination of Water and Wastewater (21st edn.). In: Eaton AD, Clesceri LS, Rice EW, Greenberg AE and Franson MAH (eds.), American Public Health Association, American Water Works Association, Water Environment Federation, USA (2005).

  43. I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918).

    Article  CAS  Google Scholar 

  44. K. Kadirvelu and C. Namasivayam, J. Membrane. Sci., 165, 159 (2000).

    Article  Google Scholar 

  45. T. Lv, W. Ma, G. Xin, R. Wang, J. Xu, D. Liu and D. Pan, J. Hazard. Mater., 237-238, 121 (2012).

    Article  CAS  Google Scholar 

  46. V. Srinivasa, P. Prasanna and K. Vishnu, Solid. State. Sci., 10, 260 (2008).

    Article  Google Scholar 

  47. Q. Wang, Z. Wu, H. H. Tay, L. Chen, Y. Liu, J. Chang, Z. Zhong, J. Luo and A. Borgna, Catal. Today, 164, 198 (2011).

    Article  CAS  Google Scholar 

  48. V. Rives-Arnau, G. Munuera and J. M. Criado, Spectrosc. Lett., 12, 733 (1979).

    Article  CAS  Google Scholar 

  49. F. M. Labajos, V. Rives and M. A. Ulibarri, J. Mater. Sci., 27, 1546 (1992).

    Article  CAS  Google Scholar 

  50. K. Yang, L. Yan, Y. Yang, S. Yu, R. Shan, H. Yu, B. Zhu and B. Du, Sep. Purif. Technol., 124, 36 (2014).

    Article  CAS  Google Scholar 

  51. F. Cavani, F. Trifirò and A. Vaccari, Catal. Today, 11, 173 (1991).

    Article  CAS  Google Scholar 

  52. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (4th Ed.), John Wiley and Sons, New York, USA (1986).

    Google Scholar 

  53. Y. Li, B. Gao, T. Wu, D. Sun, X. Li, B. Wang and F. Lu, Water Res., 43, 3067 (2009).

    Article  CAS  Google Scholar 

  54. K.V. Kumar and K. Porkodi, J. Hazard. Mater., 146, 214 (2007).

    Article  CAS  Google Scholar 

  55. C. H. Giles, T. H. McEwans, S. N. Nakhwa and D. Smith, J. Chem. Soc., 786, 3973 (1960).

    Article  Google Scholar 

  56. G. Mckay, H. S. Blair and J. K. Gardner, J. Appl. Polym. Sci., 27, 3043 (1982).

    Article  CAS  Google Scholar 

  57. S. H. Lin and R. S. Juang, J. Hazard. Mater., B 113, 195 (2004).

    Article  CAS  Google Scholar 

  58. A. P. Lim and A. Z. Aris, Biochem. Eng. J., 87, 50 (2014).

    Article  CAS  Google Scholar 

  59. M. Meng, Y. Feng, M. Zhang, Y. Liu, Y. Ji, J. Wang, Y. Wu and Y. Yan, Chem. Eng. J., 225, 331 (2013).

    Article  CAS  Google Scholar 

  60. R. S. Juang and S.H. Lin, J. Colloid Interface Sci., 269, 46 (2004).

    Article  CAS  Google Scholar 

  61. Y. Shao, H. Zhang and Y. Yan, Chem. Eng. J., 225, 488 (2013).

    Article  Google Scholar 

  62. M. Auta and B. H. Hameed, Chem. Eng. J., 237, 352 (2014).

    Article  CAS  Google Scholar 

  63. J. M. Chern and Y.W. Chien, Water. Res., 36, 647 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Khitous.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khitous, M., Salem, Z. & Halliche, D. Sorption of Cr(VI) by MgAl-NO3 hydrotalcite in fixed-bed column: Experiments and prediction of breakthrough curves. Korean J. Chem. Eng. 33, 638–648 (2016). https://doi.org/10.1007/s11814-015-0170-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0170-3

Keywords

Navigation