Skip to main content
Log in

1H and 93Nb Solid-State NMR and IR Study of Acidity of Nanodisperse Nb2O5·nH2O

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Niobium oxide hydrate is a promising material for various heterogeneous catalytic processes due to its strong acidity and stability in aqueous medium. While different synthesis conditions may lead to various particle morphologies, the effect of morphology of Nb2O5·nH2O particles on their acidic properties is not fully understood yet. In this paper, we have successfully synthesized and characterized nanodisperse niobium oxide hydrate. Using infrared (IR) spectroscopy, we demonstrated that the sample exhibits strong Brønsted acidity close in strength to sulfuric acid. Furthermore, solid-state nuclear magnetic resonance (NMR) spectroscopy in combination with ab initio calculations gave additional insight into the nature of strong acidic sites and proved to be a useful tool for identification of acidic sites in Nb2O5·nH2O systems. Thus, we have shown that it is not necessary to follow difficult high-temperature solid-state processes or processes with ammonia, which often contaminates the material, to synthesize highly acidic nanodisperse Nb2O5·nH2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Wilson, J.H. Clark, Pure Appl. Chem. 72(7), 1313–1319 (2000)

    Article  Google Scholar 

  2. J.H. Clark, Acc. Chem. Res. 35(9), 791–797 (2002)

    Article  Google Scholar 

  3. L. Rao, Resonance 12(10), 30–36 (2007)

    Article  Google Scholar 

  4. R.A. Sheldon, I.W. Arends, U. Hanefeld, Green Chemistry and Catalysis (Wiley-VCH, Weinheim, 2007), pp. 49–90

    Book  Google Scholar 

  5. W.F. Hölderich, J. Röseler, G. Heitmann, A.T. Liebens, Catal. Today 37(4), 353–366 (1997)

    Article  Google Scholar 

  6. K. Tanabe, Catal. Today 8(1), 1–11 (1990)

    Article  Google Scholar 

  7. K. Tanabe, S. Okazaki, Appl. Catal. A Gen. 133(2), 191–218 (1995)

    Article  Google Scholar 

  8. K. Tanabe, Catal. Today 78(1–4), 65–77 (2003)

    Article  Google Scholar 

  9. K. Nakajima, Y. Baba, R. Noma, M. Kitano, J.N. Kondo, S. Hayashi, M. Hara, J. Am. Chem. Soc. 133(12), 4224–4227 (2011)

    Article  Google Scholar 

  10. P. Carniti, A. Gervasini, S. Biella, A. Auroux, Chem. Mater. 17(24), 6128–6136 (2005)

    Article  Google Scholar 

  11. M. Luisa Marin, G.L. Hallett-Tapley, S. Impellizzeri, C. Fasciani, S. Simoncelli, J.C. Netto-Ferreira, J.C. ScaianoCatal. Sci. Technol 4(9), 3044–3052 (2014)

    Article  Google Scholar 

  12. H.T. Kreissl, M.M.J. Li, Y.-K. Peng, K. Nakagawa, T.J.N. Hooper, J.V. Hanna, A. Shepherd, T.-S. Wu, Y.-L. Soo, S.C.E. Tsang, J. Am. Chem. Soc. 139(36), 12670–12680 (2017)

    Article  Google Scholar 

  13. P. Batamack, R. Vincent, J. Fraissard, Catal. Lett. 36(1–2), 81–86 (1996)

    Article  Google Scholar 

  14. Z.-J. Yang, Y.-F. Li, Q.-B. Wu, N. Ren, Y.-H. Zhang, Z.-P. Liu, Y. Tang, J. Catal. 280(2), 247–254 (2011)

    Article  Google Scholar 

  15. A. Takagaki, C. Tagusagawa, S. Hayashi, M. Hara, K. Domen, Energy Environ. Sci. 3(1), 82–93 (2010)

    Article  Google Scholar 

  16. M. Renzhi, S. Takayoshi, Adv. Mater. 22(45), 5082–5104 (2010)

    Article  Google Scholar 

  17. W. Fan, Q. Zhang, W. Deng, Y. Wang, Chem. Mater. 25(16), 3277–3287 (2013)

    Article  Google Scholar 

  18. T. Fuchigami, K.-I. Kakimoto, J. Mater. Res. 32(17), 3326–3332 (2017)

    Article  ADS  Google Scholar 

  19. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, Zeitschrift für Krist. 220(5/6), 567–570 (2005)

    ADS  Google Scholar 

  20. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46(11), 6671–6687 (1992)

    Article  ADS  Google Scholar 

  21. D. Vanderbilt, Phys. Rev. B 41(11), 7892–7895 (1990)

    Article  ADS  Google Scholar 

  22. J. Yates, C. Pickard, F. Mauri, Phys. Rev. B 76(2), 24401 (2007)

    Article  ADS  Google Scholar 

  23. R.H. Byrd, J. Nocedal, R.B. Schnabel, Math. Program. 63(1–3), 129–156 (1994)

    Article  Google Scholar 

  24. M. Gasperin, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 38(7), 2024–2026 (1982)

    Article  Google Scholar 

  25. C.J. Pickard, F. Mauri, M. Ernzerhof, Phys. Rev. B 63(24), 245101-1–245101-13 (2001)

    Article  ADS  Google Scholar 

  26. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  ADS  Google Scholar 

  27. M.I. Zaki, M.A. Hasan, F.A. Al-Sagheer, L. Pasupulety, Colloids Surfaces A Physicochem. Eng. Asp. 190(3), 261–274 (2001)

    Article  Google Scholar 

  28. L.H. Little, Infrared Spectra of Adsorbed Species (Academic Press, New York, 1966)

    Google Scholar 

  29. G. Czjzek, J. Fink, F. Götz, H. Schmidt, J. Coey, J.-P. Rebouillat, A. Liénard, Phys. Rev. B 23(6), 2513–2530 (1981)

    Article  ADS  Google Scholar 

  30. O.B. Lapina, D.F. Khabibulin, K.V. Romanenko, Z. Gan, M.G. Zuev, V.N. Krasil’nikov VN, V.E. Fedorov, Solid State Nucl. Magn. Reson. 28(2–4), 204–224 (2005)

    Article  Google Scholar 

  31. O.B. Lapina, D.F. Khabibulin, A.A. Shubin, V.V. Terskikh, Prog. Nucl. Magn. Reson. Spectrosc. 53(3), 128–191 (2008)

    Article  Google Scholar 

  32. E. Papulovskiy, A.A. Shubin, V.V. Terskikh, C.J. Pickard, O.B. Lapina, Phys. Chem. Chem. Phys. 15(14), 5115–5131 (2013)

    Article  Google Scholar 

  33. Y. Koito, G.J. Rees, J.V. Hanna, M.M.J. Li, Y.K. Peng, T. Puchtler, R. Taylor, T. Wang, H. Kobayashi, I.F. Teixeira, M.A. Khan, H.T. Kreissl, S.C.E. Tsang, ChemCatChem 9(1), 144–154 (2017)

    Article  Google Scholar 

  34. A. Takagaki, D. Lu, J.N. Kondo, M. Hara, S. Hayashi, K. Domen, Chem. Mater. 17(10), 2487–2489 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was conducted within the framework of the budget project for Boreskov Institute of Catalysis. The authors also acknowledge the financial support from Russian Foundation for Basic Research (RFBR, project № 17-03-00531). The Siberian Branch of the Russian Academy of Sciences (SB RAS) Siberian Supercomputer Center is gratefully acknowledged for providing supercomputer facilities. We also would like to thank Dr. D. F. Khabibulin for the help with 93Nb NMR, Dr. A. N. Salanov for the SEM micrographs and T. Ya. Efimenko for the nitrogen adsorption experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Yakovlev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1303 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, I.V., Papulovskiy, E., Paukshtis, E.A. et al. 1H and 93Nb Solid-State NMR and IR Study of Acidity of Nanodisperse Nb2O5·nH2O. Appl Magn Reson 50, 589–597 (2019). https://doi.org/10.1007/s00723-019-01118-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-019-01118-8

Navigation