Skip to main content
Log in

High temperature water gas shift reaction over Fe-Cr-Cu nanocatalyst fabricated by a novel method

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Fe-Cr-Cu nanocatalyst was synthesized through an inorganic-precursor thermolysis approach and exploited for high temperature water gas shift reaction. The results demonstrated that the method used for the nanocatalyst fabrication led to smaller crystallite size (32.9 nm) and higher BET surface area (127.3 m2/g) compared to those of a reference sample (65.5 nm, 78.6 m2/g) prepared by co-precipitation conventional method. Furthermore, the obtained data for catalytic activity showed that the catalyst prepared via inorganic precursor has better activity than the reference sample in all studied temperatures (350-500 °C) and also exhibited higher catalytic activity than a commercial Fe-Cr-Cu catalyst in higher temperatures (more than 450 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Noor, M. V. Gil and D. Chen, Appl. Catal., B 150-151, 585 (2014).

    Article  CAS  Google Scholar 

  2. X. Lin, Y. Zhang, L. Yin, C. Chen, Y. Zhan and D. Li, Int. J. Hydrogen Energy, 39, 6424 (2014).

    Article  CAS  Google Scholar 

  3. M. K. Gnanamani, G. Jacobs, W. D. Shafer, D. E. Sparks, S. Hopps, G. A. Thomas and B. H. Davis, Top. Catal., 57, 612 (2014).

    Article  CAS  Google Scholar 

  4. J. Andersson and J. Lundgren, Appl. Energy, 130, 484 (2014).

    Article  CAS  Google Scholar 

  5. T. Popa, G. Xu, T. F. Barton and M. D. Argyle, Appl. Catal. A: Gen., 379, 15 (2010).

    Article  CAS  Google Scholar 

  6. P. Kappen, J. Grunwaldt, B. S. Hammershoi, L. Troger and B. S. Clausen, J. Catal., 198, 56 (2001).

    Article  CAS  Google Scholar 

  7. Z. Bao, W. Ding and Q. Li, Int. J. Hydrogen Energy, 37, 951 (2012).

    Article  CAS  Google Scholar 

  8. S. Natesakhawat, X. Wang, L. Zhang and U. S. Ozkan, J. Mol. Catal. A: Chem., 260, 82 (2006).

    Article  CAS  Google Scholar 

  9. C. Ratnasamy and J. P. Wagnera, Catal. Rev. Sci. Eng., 51, 325 (2009).

    Article  CAS  Google Scholar 

  10. F. Meshkani and M. Rezaei, Korean J. Chem. Eng., 32, 1278 (2015).

    Article  CAS  Google Scholar 

  11. J. C. Gonzalez, M. G. Gonzalez, M. A. Laborde and N. Moreno, Appl. Catal., 20, 3 (1986).

    Article  CAS  Google Scholar 

  12. Y. T. Kim and E. D. Park, Korean J. Chem. Eng., 27, 1123 (2010).

    Article  CAS  Google Scholar 

  13. V. Idakiev, A. D. Mihajlova, B. Kunev and A. Andreev, React. Kinet. Catal. Lett., 33, 119 (1987).

    Article  CAS  Google Scholar 

  14. C. Rhodes, B. P. Williams, F. King and G. J. Hutchings, Catal. Commun., 3, 381 (2002).

    Article  CAS  Google Scholar 

  15. C. Rhodes and G. J. Hutchings, Phys. Chem. Chem. Phys., 5, 2719 (2003).

    Article  CAS  Google Scholar 

  16. C. Martos, J. Dufour and A. Ruiz, Int. J. Hydrogen Energy, 34, 4475 (2009).

    Article  CAS  Google Scholar 

  17. M. Marono, E. Ruiz, J. M. Sanchez, C. Martos, J. Dufour and A. Ruiz, Int. J. Hydrogen Energy, 34, 8921 (2009).

    Article  CAS  Google Scholar 

  18. G. K. Reddy, K. Gunasekera, P. Boolchand, J. Dong and P. G. Smirniotis, J. Phys. Chem. C, 115, 7586 (2011).

    Article  CAS  Google Scholar 

  19. F. Meshkani and M. Rezaei, Chem. Eng. J., 260, 107 (2015).

    Article  CAS  Google Scholar 

  20. J. Y. Lee, D.-W. Lee, K.-Y. Lee and Y. Wang, Catal. Today, 146, 260 (2009).

    Article  CAS  Google Scholar 

  21. J. Dufour, C. Martos, A. Ruiz and F. J. Ayuela, Int. J. Hydrogen Energy, 18, 7647 (2013).

    Article  Google Scholar 

  22. A. Salehirad, S. M. Latifi and A. Miroliaee, Mater. Res. Bull., 59, 104 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mahdi Latifi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latifi, S.M., Salehirad, A. High temperature water gas shift reaction over Fe-Cr-Cu nanocatalyst fabricated by a novel method. Korean J. Chem. Eng. 33, 473–480 (2016). https://doi.org/10.1007/s11814-015-0138-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0138-3

Keywords

Navigation