Skip to main content
Log in

Hydroxyoctadecadienoic Acids Regulate Apoptosis in Human THP-1 Cells in a PPARγ-Dependent Manner

  • Original Article
  • Published:
Lipids

Abstract

Macrophage apoptosis, a key process in atherogenesis, is regulated by oxidation products, including hydroxyoctadecadienoic acids (HODEs). These stable oxidation products of linoleic acid (LA) are abundant in atherosclerotic plaque and activate PPARγ and GPR132. We investigated the mechanisms through which HODEs regulate apoptosis. The effect of HODEs on THP-1 monocytes and adherent THP-1 cells were compared with other C18 fatty acids, LA and α-linolenic acid (ALA). The number of cells was reduced within 24 hours following treatment with 9-HODE (p < 0.01, 30 μM) and 13 HODE (p < 0.01, 30 μM), and the equivalent cell viability was also decreased (p < 0.001). Both 9-HODE and 13-HODE (but not LA or ALA) markedly increased caspase-3/7 activity (p < 0.001) in both monocytes and adherent THP-1 cells, with 9-HODE the more potent. In addition, 9-HODE and 13-HODE both increased Annexin-V labelling of cells (p < 0.001). There was no effect of LA, ALA, or the PPARγ agonist rosiglitazone (1μM), but the effect of HODEs was replicated with apoptosis-inducer camptothecin (10μM). Only 9-HODE increased DNA fragmentation. The pro-apoptotic effect of HODEs was blocked by the caspase inhibitor DEVD-CHO. The PPARγ antagonist T0070907 further increased apoptosis, suggestive of the PPARγ-regulated apoptotic effects induced by 9-HODE. The use of siRNA for GPR132 showed no evidence that the effect of HODEs was mediated through this receptor. 9-HODE and 13-HODE are potent—and specific—regulators of apoptosis in THP-1 cells. Their action is PPARγ-dependent and independent of GPR132. Further studies to identify the signalling pathways through which HODEs increase apoptosis in macrophages may reveal novel therapeutic targets for atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HODEs :

Hydroxyoctadecadienoic acids

PPARγ :

Peroxisome proliferator-activated receptor gamma

GPR132 :

G protein-coupled receptor-132

15-LOX-1 :

15-Lipoxygenase-1

oxLDL :

Oxidised low-density lipoprotein

References

  1. Kuhn H, Belkner J, Wiesner R, Schewe T, Lankin VZ, Tikhaze AK (1992) Structure elucidation of oxygenated lipids in human atherosclerotic lesions. Eicosanoids 5:17–22

    CAS  PubMed  Google Scholar 

  2. Jira W, Spiteller G, Carson W, Schramm A (1998) Strong increase in hydroxy fatty acids derived from linoleic acid in human low density lipoproteins of atherosclerotic patients. Chem Phys Lipids 91:1–11

    Article  CAS  PubMed  Google Scholar 

  3. Waddington E, Sienuarine K, Puddey I, Croft K (2001) Identification and quantitation of unique fatty acid oxidation products in human atherosclerotic plaque using high-performance liquid chromatography. Anal Biochem 292:234–244

    Article  CAS  PubMed  Google Scholar 

  4. Kuhn H, Belkner J, Zaiss S, Fahrenklemper T, Wohlfeil S (1994) Involvement of 15-lipoxygenase in early stages of atherogenesis. J Exp Med 179:1903–1911

    Article  CAS  PubMed  Google Scholar 

  5. Jostarndt K, Gellert N, Rubic T, Weber C, Kuhn H, Johansen B, Hrboticky N, Neuzil J (2002) Dissociation of apoptosis induction and CD36 upregulation by enzymatically modified low-density lipoprotein in monocytic cells. Biochem Biophys Res Commun 290:988–993

    Article  CAS  PubMed  Google Scholar 

  6. Vangaveti V, Baune BT, Kennedy RL (2010) Hydroxyoctadecadienoic acids: novel regulators of macrophage differentiation and atherogenesis. Ther Adv Endocrinol Metab 1:51–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Brinckmann R, Kuhn H (1997) Regulation of 15-lipoxygenase expression by cytokines. Adv Exp Med Biol 400B:599–604

    CAS  PubMed  Google Scholar 

  8. Waddington EI, Croft KD, Sienuarine K, Latham B, Puddey IB (2003) Fatty acid oxidation products in human atherosclerotic plaque: an analysis of clinical and histopathological correlates. Atherosclerosis 167:111–120

    Article  CAS  PubMed  Google Scholar 

  9. Upston JM, Neuzil J, Witting PK, Alleva R, Stocker R (1997) Oxidation of free fatty acids in low density lipoprotein by 15-lipoxygenase stimulates nonenzymic, alpha-tocopherol-mediated peroxidation of cholesteryl esters. J Biol Chem 272:30067–30074

    Article  CAS  PubMed  Google Scholar 

  10. Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 93:229–240

    Article  CAS  PubMed  Google Scholar 

  11. Han KH, Chang MK, Boullier A, Green SR, Li A, Glass CK, Quehenberger O (2000) Oxidized LDL reduces monocyte CCR2 expression through pathways involving peroxisome proliferator-activated receptor gamma. J Clin Invest 106:793–802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ricote M, Welch JS, Glass CK (2000) Regulation of macrophage gene expression by the peroxisome proliferator-activated receptor-gamma. Horm Res 54:275–280

    Article  CAS  PubMed  Google Scholar 

  13. Inoue M, Itoh H, Tanaka T, Chun TH, Doi K, Fukunaga Y, Sawada N, Yamshita J, Masatsugu K, Saito T, Sakaguchi S, Sone M, Yamahara K, Yurugi T, Nakao K (2001) Oxidized LDL regulates vascular endothelial growth factor expression in human macrophages and endothelial cells through activation of peroxisome proliferator-activated receptor-gamma. Arterioscler Thromb Vasc Biol 21:560–566

    Article  CAS  PubMed  Google Scholar 

  14. Fu Y, Luo N, Lopes-Virella MF, Garvey WT (2002) The adipocyte lipid binding protein (ALBP/aP2) gene facilitates foam cell formation in human THP-1 macrophages. Atherosclerosis 165:259–269

    Article  CAS  PubMed  Google Scholar 

  15. Barbier O, Torra IP, Duguay Y, Blanquart C, Fruchart JC, Glineur C, Staels B (2002) Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol 22:717–726

    Article  CAS  PubMed  Google Scholar 

  16. Tabas I (2005) Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol 25:2255–2264

    Article  CAS  PubMed  Google Scholar 

  17. Secchiero P, Corallini F, Pandolfi A, Consoli A, Candido R, Fabris B, Celeghini C, Capitani S, Zauli G (2006) An increased osteoprotegerin serum release characterizes the early onset of diabetes mellitus and may contribute to endothelial cell dysfunction. Am J Pathol 169:2236–2244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Stoneman V, Braganza D, Figg N, Mercer J, Lang R, Goddard M, Bennett M (2007) Monocyte/macrophage suppression in CD11b diphtheria toxin receptor transgenic mice differentially affects atherogenesis and established plaques. Circ Res 100:884–893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ait-Oufella H, Pouresmail V, Simon T, Blanc-Brude O, Kinugawa K, Merval R, Offenstadt G, Leseche G, Cohen PL, Tedgui A, Mallat Z (2008) Defective mer receptor tyrosine kinase signaling in bone marrow cells promotes apoptotic cell accumulation and accelerates atherosclerosis. Arterioscler Thromb Vasc Biol 28:1429–1431

    Article  CAS  PubMed  Google Scholar 

  20. Thorp E, Cui D, Schrijvers DM, Kuriakose G, Tabas I (2008) Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe-/- mice. Arterioscler Thromb Vasc Biol 28:1421–1428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Thorp E, Li Y, Bao L, Yao PM, Kuriakose G, Rong J, Fisher EA, Tabas I, Thorp E, Li Y, Bao L, Yao PM, Kuriakose G, Rong J, Fisher EA, Tabas I (2009) Brief report: increased apoptosis in advanced atherosclerotic lesions of Apoe-/- mice lacking macrophage Bcl-2. Arterioscler Thromb Vasc Biol 29:169–172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Carpenter KLH, Challis IR, Arends MJ (2003) Mildly oxidised LDL induces more macrophage death than moderately oxidised LDL: roles of peroxidation, lipoprotein-associated phospholipase A2 and PPARgamma. FEBS Lett 553:145–150

    Article  CAS  PubMed  Google Scholar 

  23. Lizard G, Lemaire S, Monier S, Gueldry S, Néel D, Gambert P (1997) Induction of apoptosis and of interleukin-1β secretion by 7β-hydroxycholesterol and 7-ketocholesterol: partial inhibition by Bcl-2 overexpression. FEBS Lett 419:276–280

    Article  CAS  PubMed  Google Scholar 

  24. Rusinol AE, Thewke D, Liu J, Freeman N, Panini SR, Sinensky MS (2004) AKT/protein kinase B regulation of BCL family members during oxysterol-induced apoptosis. J Biol Chem 279:1392–1399

    Article  CAS  PubMed  Google Scholar 

  25. Hampel JKA, Brownrigg LM, Vignarajah D, Croft KD, Dharmarajan AM, Bentel JM, Puddey IB, Yeap BB (2006) Differential modulation of cell cycle, apoptosis and PPARgamma2 gene expression by PPARgamma agonists ciglitazone and 9-hydroxyoctadecadienoic acid in monocytic cells. Prostaglandins Leukot Essent Fatty Acids 74:283–293

    Article  CAS  PubMed  Google Scholar 

  26. Obinata H, Izumi T, Obinata H, Izumi T (2009) G2A as a receptor for oxidized free fatty acids. Prostaglandins Other Lipid Mediat 89:66–72

    Article  CAS  PubMed  Google Scholar 

  27. Yin H, Chu A, Li W, Wang B, Shelton F, Otero F, Nguyen DG, Caldwell JS, Chen YA, Yin H, Chu A, Li W, Wang B, Shelton F, Otero F, Nguyen DG, Caldwell JS, Chen YA (2009) Lipid G protein-coupled receptor ligand identification using beta-arrestin PathHunter assay. J Biol Chem 284:12328–12338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Vangaveti V, Shashidhar V, Jarrod G, Baune BT, Kennedy RL (2010) Free fatty acid receptors: emerging targets for treatment of diabetes and its complications. Ther Adv Endocrinol Metab 1:165–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Rikitake Y, K-i Hirata, Yamashita T, Iwai K, Kobayashi S, Itoh H, Ozaki M, Ejiri J, Shiomi M, Inoue N, Kawashima S, Yokoyama M (2002) Expression of G2A, a receptor for lysophosphatidylcholine, by macrophages in murine, rabbit, and human atherosclerotic plaques. Arterioscler Thromb Vasc Biol 22:2049–2053

    Article  CAS  PubMed  Google Scholar 

  30. Bolick DT, Whetzel AM, Skaflen M, Deem TL, Lee J, Hedrick CC (2007) Absence of the G protein-coupled receptor G2A in mice promotes monocyte/endothelial interactions in aorta. Circ Res 100:572–580 (see comment)

    Article  CAS  PubMed  Google Scholar 

  31. Bolick DT, Skaflen MD, Johnson LE, Kwon SC, Howatt D, Daugherty A, Ravichandran KS, Hedrick CC, Bolick DT, Skaflen MD, Johnson LE, Kwon S-C, Howatt D, Daugherty A, Ravichandran KS, Hedrick CC (2009) G2A deficiency in mice promotes macrophage activation and atherosclerosis. Circ Res 104:318–327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Parks BW, Gambill GP, Lusis AJ, Kabarowski JHS (2005) Loss of G2A promotes macrophage accumulation in atherosclerotic lesions of low density lipoprotein receptor-deficient mice. J Lipid Res 46:1405–1415

    Article  CAS  PubMed  Google Scholar 

  33. Parks BW, Lusis AJ, Kabarowski JHS (2006) Loss of the lysophosphatidylcholine effector, G2A, ameliorates aortic atherosclerosis in low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol 26:2703–2709

    Article  CAS  PubMed  Google Scholar 

  34. Parks BW, Srivastava R, Yu S, Kabarowski JH, Parks BW, Srivastava R, Yu S, Kabarowski JHS (2009) ApoE-dependent modulation of HDL and atherosclerosis by G2A in LDL receptor-deficient mice independent of bone marrow-derived cells. Arterioscler Thromb Vasc Biol 29:539–547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Tsuchiya S, Kobayashi Y, Goto Y, Okumura H, Nakae S, Konno T, Tada K (1982) Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res 42:1530–1536

    CAS  PubMed  Google Scholar 

  36. Baird SK, Hampton MB, Gieseg SP (2004) Oxidized LDL triggers phosphatidylserine exposure in human monocyte cell lines by both caspase-dependent and -independent mechanisms. FEBS Lett 578:169–174

    Article  CAS  PubMed  Google Scholar 

  37. Rutherford LD, Gieseg SP (2012) 7-ketocholesterol is not cytotoxic to U937 cells when incorporated into acetylated low density lipoprotein. Lipids 47:239–247

    Article  CAS  PubMed  Google Scholar 

  38. Wintergerst ES, Jelk J, Rahner C, Asmis R (2000) Apoptosis induced by oxidized low density lipoprotein in human monocyte-derived macrophages involves CD36 and activation of caspase-3. Eur J biochem/FEBS 267:6050–6059

    Article  CAS  Google Scholar 

  39. Salvayre R, Auge N, Benoist H, Negre-Salvayre A, Salvayre R, Auge N, Benoist H, Negre-Salvayre A (2002) Oxidized low-density lipoprotein-induced apoptosis. Biochim Biophys Acta 1585:213–221

    Article  CAS  PubMed  Google Scholar 

  40. Hundal RS, Gomez-Munoz A, Kong JY, Salh BS, Marotta A, Duronio V, Steinbrecher UP, Hundal RS, Gomez-Munoz A, Kong JY, Salh BS, Marotta A, Duronio V, Steinbrecher UP (2003) Oxidized low density lipoprotein inhibits macrophage apoptosis by blocking ceramide generation, thereby maintaining protein kinase B activation and Bcl-XL levels. J Biol Chem 278:24399–24408

    Article  CAS  PubMed  Google Scholar 

  41. Namgaladze D, Kollas A, Brune B, Namgaladze D, Kollas A, Brune B (2008) Oxidized LDL attenuates apoptosis in monocytic cells by activating ERK signaling. J Lipid Res 49:58–65

    Article  CAS  PubMed  Google Scholar 

  42. Chen JH, Riazy M, Smith EM, Proud CG, Steinbrecher UP, Duronio V, Chen JH, Riazy M, Smith EM, Proud CG, Steinbrecher UP, Duronio V (2009) Oxidized LDL-mediated macrophage survival involves elongation factor-2 kinase. Arterioscler Thromb Vasc Biol 29:92–98

    Article  CAS  PubMed  Google Scholar 

  43. Vicca S, Hennequin C, Nguyen-Khoa T, Massy ZA, Descamps-Latscha B, Drueke TB, Lacour B (2000) Caspase-dependent apoptosis in THP-1 cells exposed to oxidized low-density lipoproteins. Biochem Biophys Res Commun 273:948–954

    Article  CAS  PubMed  Google Scholar 

  44. Boullier A, Li Y, Quehenberger O, Palinski W, Tabas I, Witztum JL, Miller YI, Boullier A, Li Y, Quehenberger O, Palinski W, Tabas I, Witztum JL, Miller YI (2006) Minimally oxidized LDL offsets the apoptotic effects of extensively oxidized LDL and free cholesterol in macrophages. Arterioscler Thromb Vasc Biol 26:1169–1176

    Article  CAS  PubMed  Google Scholar 

  45. Lee G, Elwood F, McNally J, Weiszmann J, Lindstrom M, Amaral K, Nakamura M, Miao S, Cao P, Learned RM (2002) T0070907, a selective ligand for peroxisome proliferator-activated receptor γ, functions as an antagonist of biochemical and cellular activities. J Biol Chem 277:19649–19657

    Article  CAS  PubMed  Google Scholar 

  46. Itoh T, Fairall L, Amin K, Inaba Y, Szanto A, Balint BL, Nagy L, Yamamoto K, Schwabe JWR (2008) Structural basis for the activation of PPARgamma by oxidized fatty acids. Nat Struct Mol Biol 15:924–931

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Straus DS, Pascual G, Li M, Welch JS, Ricote M, Hsiang CH, Sengchanthalangsy LL, Ghosh G, Glass CK (2000) 15-deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. Proc Natl Acad Sci USA 97:4844–4849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Castrillo A, Mojena M, Hortelano S, Bosca L (2001) Peroxisome proliferator-activated receptor-gamma-independent inhibition of macrophage activation by the non-thiazolidinedione agonist L-796,449. Comparison with the effects of 15-deoxy-delta(12,14)-prostaglandin J(2). J Biol Chem 276:34082–34088

    Article  CAS  PubMed  Google Scholar 

  49. Clay CE, Monjazeb A, Thorburn J, Chilton FH, High KP (2002) 15-Deoxy-delta12,14-prostaglandin J2-induced apoptosis does not require PPARgamma in breast cancer cells. J Lipid Res 43:1818–1828

    Article  CAS  PubMed  Google Scholar 

  50. Azuma Y, Watanabe K, Date M, Daito M, Ohura K, Azuma Y, Watanabe K, Date M, Daito M, Ohura K (2004) Induction of proliferation by 15-deoxy-delta12,14-prostaglandin J2 and the precursors in monocytic leukemia U937. Pharmacology 71:181–191

    Article  CAS  PubMed  Google Scholar 

  51. Wittwer J, Hersberger M (2007) The two faces of the 15-lipoxygenase in atherosclerosis. Prostaglandins Leukot Essent Fatty Acids 77:67–77

    Article  CAS  PubMed  Google Scholar 

  52. Kongkaneramit L, Sarisuta N, Azad N, Lu Y, Iyer AK, Wang L, Rojanasakul Y (2008) Dependence of reactive oxygen species and FLICE inhibitory protein on lipofectamine-induced apoptosis in human lung epithelial cells. J Pharmacol Exp Ther 325:969–977

    Article  CAS  PubMed  Google Scholar 

  53. Kiefer K, Clement J, Garidel P, Peschka-Suss R (2004) Transfection efficiency and cytotoxicity of nonviral gene transfer reagents in human smooth muscle and endothelial cells. Pharm Res 21:1009–1017

    Article  CAS  PubMed  Google Scholar 

  54. Yamano S, Dai J, Moursi AM (2010) Comparison of transfection efficiency of nonviral gene transfer reagents. Mol Biotechnol 46:287–300

    Article  CAS  PubMed  Google Scholar 

  55. Hattori T, Obinata H, Ogawa A, Kishi M, Tatei K, Ishikawa O, Izumi T, Hattori T, Obinata H, Ogawa A, Kishi M, Tatei K, Ishikawa O, Izumi T (2008) G2A plays proinflammatory roles in human keratinocytes under oxidative stress as a receptor for 9-hydroxyoctadecadienoic acid. J Invest Dermatol 128:1123–1133

    Article  CAS  PubMed  Google Scholar 

  56. Lin P, Ye RD (2003) The lysophospholipid receptor G2A activates a specific combination of G proteins and promotes apoptosis. J Biol Chem 278:14379–14386

    Article  CAS  PubMed  Google Scholar 

  57. Xie S, Lee YF, Kim E, Chen LM, Ni J, Fang LY, Liu S, Lin SJ, Abe J, Berk B, Ho FM, Chang C, Xie S, Lee Y-F, Kim E, Chen L-M, Ni J, Fang L-Y, Liu S, Lin S-J, Abe J-I, Berk B, Ho F-M, Chang C (2009) TR4 nuclear receptor functions as a fatty acid sensor to modulate CD36 expression and foam cell formation. Proc Natl Acad Sci USA 106:13353–13358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Patwardhan AM, Scotland PE, Akopian AN, Hargreaves KM (2009) Activation of TRPV1 in the spinal cord by oxidized linoleic acid metabolites contributes to inflammatory hyperalgesia. Proc Natl Acad Sci USA 106:18820–18824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Patwardhan AM, Akopian AN, Ruparel NB, Diogenes A, Weintraub ST, Uhlson C, Murphy RC, Hargreaves KM (2010) Heat generates oxidized linoleic acid metabolites that activate TRPV1 and produce pain in rodents. J Clin Invest 120:1617–1626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Zhao L, Funk CD (2004) Lipoxygenase pathways in atherogenesis. Trends Cardiovasc Med 14:191–195

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

James Cook University and the Private Practice Fund of the Townsville Hospital generously supported this work. We are grateful to Linda Thomas, Jason Hodge, and Stephen Garland for their technical assistance in the early stages of this work.

Conflict of interest

None of the authors has a conflict of interest to declare in relation to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Kennedy.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vangaveti, V.N., Shashidhar, V.M., Rush, C. et al. Hydroxyoctadecadienoic Acids Regulate Apoptosis in Human THP-1 Cells in a PPARγ-Dependent Manner. Lipids 49, 1181–1192 (2014). https://doi.org/10.1007/s11745-014-3954-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-014-3954-z

Keywords

Navigation