Skip to main content
Log in

7-Ketocholesterol is Not Cytotoxic to U937 Cells When Incorporated into Acetylated Low Density Lipoprotein

  • Original Article
  • Published:
Lipids

Abstract

The growth of the necrotic core region within advanced atherosclerotic plaque is thought to be driven by oxidised low density lipoprotein (oxLDL)-induced death of macrophage cells. OxLDL and atherosclerotic plaque are rich in oxysterols, especially 7-ketocholesterol (7KC). As 7KC triggers cell death at physiological concentrations when added directly to the cell culture media, 7KC and other oxysterols have been suggested to be the main cytotoxic agent of oxLDL. We investigated this hypothesis by examining the toxicity of 7KC to monocyte-like U937 cells when incorporated into high-uptake non-toxic acetylated LDL (acLDL). Incorporation of 7KC into acLDL greatly reduced the oxysterol toxicity when compared with an equivalent amount of 7KC added directly to U937 cells. Enrichment of oxLDL with 7KC did not significantly enhance lipoprotein toxicity. OxLDL was highly cytotoxic yet generated only low levels of intracellular 7KC. In comparison, 7KC-acLDL generated high intracellular 7KC concentrations with little loss in cell viability. The data show that when incorporated into lipoprotein, 7KC cytotoxicity is greatly reduced, even though intracellular levels exceed those measured when cells are incubated with oxLDL, which suggests 7KC is not the significant toxic agent within oxLDL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

acLDL:

Acetylated LDL

oxLDL:

Oxidised low density lipoprotein

7KC:

7-Ketocholesterol

HNE:

4-Hydroxynonenal

HPLC:

High performance liquid chromatography

MDA:

Malondialdehyde

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

PBS:

Phosphate buffered saline

References

  1. Ball RY, Stowers EC, Burton JH, Cary NRB, Skepper JN, Mitchinson MJ (1995) Evidence that the death of macrophage foam cells contributes to the lipid core of atheroma. Atherosclerosis 114:45–54

    Article  PubMed  CAS  Google Scholar 

  2. Gieseg SP, Leake DS, Flavall EM, Amit Z, Reid L, Yang Y (2009) Macrophage antioxidant protection within atherosclerotic plaques. Front Biosci 14:1230–1246

    Article  PubMed  CAS  Google Scholar 

  3. Esterbauer H, Dieber-Rotheneder M, Waeg G, Striegl G, Jurgens G (1990) Biochemical, structural, and functional properties of oxidized low-density lipoprotein. Chem Res Toxicol 3:77–92

    Article  PubMed  CAS  Google Scholar 

  4. Gieseg SP, Pearson J, Firth CA (2003) Protein hydroperoxides are a major product of low density lipoprotein oxidation during copper, peroxyl radical and macrophage-mediated oxidation. Free Radic Res 37:983–991

    Article  PubMed  CAS  Google Scholar 

  5. Brown AJ, Jessup W (1999) Oxysterols and atherosclerosis. Atherosclerosis 142:1–28

    Article  PubMed  CAS  Google Scholar 

  6. Haberland ME, Olch CL, Folgelman AM (1984) Role of lysines in mediating interaction of modified low density lipoproteins with the scavenger receptor of human monocyte macrophages. J Biol Chem 259:11305–11311

    PubMed  CAS  Google Scholar 

  7. Hoff F, O’Neil J, Chisolm GM, Cole TB, Quehenberger O, Esterbauer H, Jurgens G (1989) Modification of low density lipoproteins with 4-hydroxynonenal induces uptake by macrophages. Atherosclerosis 9:538–549

    CAS  Google Scholar 

  8. Clare K, Hardwick S, Carpenter KL, Weeratunge N, Mitchinson MJ (1995) Toxicity of oxysterols to human monocyte–macrophages. Atherosclerosis 118:67–75

    Article  PubMed  CAS  Google Scholar 

  9. Colles SM, Maxson JM, Carlson SG, Chisolm GM (2001) Oxidized LDL-induced injury and apoptosis in atherosclerosis—potential roles for oxysterols. Trends Cardiovasc Med 11:131–138

    Article  PubMed  CAS  Google Scholar 

  10. Larsson DA, Baird S, Nyhalah JD, Yuan XM, Li W (2006) Oxysterol mixtures, in atheroma-relevant proportions, display synergistic and proapoptotic effects. Free Radic Biol Med 41:902–910

    Article  PubMed  CAS  Google Scholar 

  11. Garcia-Cruset S, Carpenter KLH, Guardiola F, Stein BK, Mitchinson MJ (2001) Oxysterol profiles of normal human arteries, fatty streaks and advanced lesions. Free Radic Res 35:31–41

    Article  PubMed  CAS  Google Scholar 

  12. Brown AJ, Dean RT, Jessup W (1996) Free and esterified oxysterol formation during copper-oxidation of low density lipoproteic and uptake by macrophages. J Lipid Res 37:320–335

    PubMed  CAS  Google Scholar 

  13. Gerry AB, Satchell L, Leake DS (2007) A novel method for production of lipid hydroperoxide- or oxysterol-rich low-density lipoprotein. Atherosclerosis 197:579–587

    Article  PubMed  Google Scholar 

  14. Yang L, Sinensky MS (2000) 25-Hydroxycholesterol activates a cytochrome c release-mediated caspase cascade. Biochem Biophys Res Commun 278:557–563

    Article  PubMed  CAS  Google Scholar 

  15. Berthier A, Lemaire-Ewing S, Prunet C, Monier S, Athias A, Bessede G, De Barros JPP, Laubriet A, Gambert P, Lizard G, Neel D (2004) Involvement of a calcium-dependent dephosphorylation of BAD associated with the localization of TRPC-1 within lipid rafts in 7-ketocholesterol-induced THP-1 cell apoptosis. Cell Death Differ 11:897–905

    Article  PubMed  CAS  Google Scholar 

  16. Gelissen IC, Brown AJ, Mander EL, Kritharides L, Dean RT, Jessup W (1996) Sterol efflux is impaired from macrophage foam cells selectively enriched with 7-ketocholesterol. J Biol Chem 271:17852–17860

    Article  PubMed  CAS  Google Scholar 

  17. Jialal I, Freeman DA, Grundy SM (1991) Varying susceptibility of different low-density lipoproteins to oxidative modification. Arterioscler Thromb 11:482–488

    Article  PubMed  CAS  Google Scholar 

  18. Brown AJ, Leong S, Dean RT, Jessup W (1997) 7-Hydroperoxycholesterol and its products in oxidised low density lipoprotein and human atherosclerotic plaque. J Lipid Res 38:1730–1745

    PubMed  CAS  Google Scholar 

  19. Lizard G, Miguet C, Bessede G, Monier S, Gueldry S, Neel D, Gambert P (2000) Impairment with various antioxidants of the loss of mitochondrial transmembrane potential and of the cytosolic release of cytochrome c occurring during 7-ketocholesterol-induced apoptosis. Free Radic Biol Med 28:743–753

    Article  PubMed  CAS  Google Scholar 

  20. Baird SK, Hampton M, Gieseg SP (2004) Oxidised LDL triggers phosphatidylserine exposure in human monocyte cell lines by both caspase-dependent and independent mechanisms. FEBS Lett 578:169–174

    Article  PubMed  CAS  Google Scholar 

  21. Gieseg SP, Amit Z, Yang YT, Shchepetkina A, Katouah H (2010) Oxidant production, oxLDL uptake, and CD36 levels in human monocyte derived macrophages are down regulated by the macrophage generated antioxidant 7,8-dihydroneopterin. Antioxid Redox Signal 13:1525–1534

    Article  PubMed  CAS  Google Scholar 

  22. Gieseg SP, Esterbauer H (1994) Low density lipoprotein is saturable by pro-oxidant copper. FEBS Lett 343:188–194

    Article  PubMed  CAS  Google Scholar 

  23. Kritharides L, Jessup W, Mander EL, Dean RT (1995) Apolipoprotein A1 mediated efflux of sterols from oxidised LDL load macrophages. Atheroscler Thromb Vasc Biol 15:276–289

    Article  CAS  Google Scholar 

  24. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  25. Kritharides L, Jessup W, Gifford J, Dean RT (1993) A method for defining the stages of low-density lipoprotein oxidation by the separation of cholesterol and cholesterol ester-oxidation products using HPLC. Anal Biochem 213:79–89

    Article  PubMed  CAS  Google Scholar 

  26. Cotgreave IA, Moldeus P (1986) Methodologies for the application of monobromobimane to the simultaneous analysis of soluble and protein thiol components of biological systems. J Biochem Biophys Meth 13:231–249

    Article  PubMed  CAS  Google Scholar 

  27. Baird SK, Reid L, Hampton M, Gieseg SP (2005) OxLDL induced cell death is inhibited by the macrophage synthesised pterin, 7,8-dihydroneopterin, in U937 cells but not THP-1 cells. Biochim Biophys Acta 1745:361–369

    Article  PubMed  CAS  Google Scholar 

  28. Lizard G, Gueldry S, Sordet O, Monier S, Athias A, Miguet C, Bessede G, Lemaire S, Solary E, Gambert P (1998) Glutathione is implied in the control of 7-ketocholesterol-induced apoptosis, which is associated with radical oxygen species production. FASEB J 12:1651–1663

    PubMed  CAS  Google Scholar 

  29. Monier S, Samadi M, Prunet C, Denance M, Laubriet A, Anne AA, Berthier A, Steinmetz E, Jurgens G, Negre-Salvayre A, Bessede G, Lemaire-Ewing S, Neel D, Gambert P, Lizard G (2003) Impairment of the cytotoxic and oxidative activities of 7 beta-hydroxycholesterol and 7-ketocholesterol by esterification with oleate. Biochem Biophys Res Commun 303:814–824

    Article  PubMed  CAS  Google Scholar 

  30. Gieseg SP, Reibnegger G, Wachter H, Esterbauer H (1995) 7,8-Dihydroneopterin inhibits low density lipoprotein oxidation in vitro. Evidence that this macrophage secreted pteridine is an antioxidant. Free Radic Res 23:123–136

    Article  PubMed  CAS  Google Scholar 

  31. Gieseg SP, Duggan S, Rait C, Platt A (2002) Protein and thiol oxidation in cells exposed to peroxyl radicals, is inhibited by the macrophage synthesised pterin 7,8-dihydroneopterin. Biochim Biophys Acta 1591:139–145

    Article  PubMed  Google Scholar 

  32. Leonarduzzi G, Vizio B, Sottero B, Verde V, Gamba P, Mascia C, Chiarpotto E, Poli G, Biasi F (2006) Early involvement of ROS overproduction in apoptosis induced by 7-ketocholesterol. Antioxid Redox Signal 8:375–380

    Article  PubMed  CAS  Google Scholar 

  33. Massey JB (2006) Membrane and protein interactions of oxysterols. Curr Opin Lipidol 17:296–301

    Article  PubMed  CAS  Google Scholar 

  34. Chisolm GM, Ma GP, Irwin KC, Martin LL, Gunderson KG, Linberg LF, Morel DW, Dicorleto PE (1994) 7-Beta-hydroperoxycholest-5-en-3-beta-ol, a component of human atherosclerotic lesions, is the primary cytotoxin of oxidized human low-density-lipoprotein. Proc Natl Acad Sci USA 91:11452–11456

    Article  PubMed  CAS  Google Scholar 

  35. Ermak N, Lacour B, Goirand F, Drüeke TB, Vicca S (2010) Differential apoptotic pathways activated in response to Cu-induced or HOCl-induced LDL oxidation in U937 monocytic cell line. Biochem Biophys Res Commun 393:783–787

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly funded through a project grant from the National Heart Foundation of New Zealand and Student Research Support from the School of Biological Sciences, University of Canterbury. We would like to thank our blood donors for our source of blood and the Nurses from The Health Centre for carrying out the blood collection.

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven P. Gieseg.

About this article

Cite this article

Rutherford, L.D., Gieseg, S.P. 7-Ketocholesterol is Not Cytotoxic to U937 Cells When Incorporated into Acetylated Low Density Lipoprotein. Lipids 47, 239–247 (2012). https://doi.org/10.1007/s11745-011-3634-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3634-1

Keywords

Navigation