Skip to main content

Advertisement

Log in

Comparison of Transfection Efficiency of Nonviral Gene Transfer Reagents

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

This study compared six commercially available reagents (Arrest-In, ExpressFect, FuGENE HD, jetPEI, Lipofectamine 2000, and SuperFect) for gene transfection. We examined the efficiency and cytotoxicity using nine different cell lines (MC3T3-E1 mouse preosteoblasts, PT-30 human epithelial precancer cells, C3H10T1/2 mouse stem cells, MCF-7 human breast cancer cells, HeLa human cervical cancer, C2C12 mouse myoblasts, Hep G2 human hepatocellular carcinoma, 4T1 mouse mammary carcinoma, and HCT116 human colorectal carcinoma), and primary cells (HEKn human epidermal keratinocytes) with two different plasmid DNAs encoding luciferase or β-galactosidase in the presence or absence of serum. Maximal transfection efficiency in MC3T3-E1, C3H10T1/2, HeLa, C2C12, Hep G2, and HCT116 was seen using FuGENE HD, in PT-30, 4T1, and HEKn was seen using Arrest-In, and in MCF-7 was seen using jetPEI. Determination of cytotoxicity showed that the largest amount of viable cells was found after transfection with jetPEI and ExpressFect. These results suggest that FuGENE HD is the most preferred transfection reagent for many cell lines, followed by Arrest-In and jetPEI. These results may be useful for improving nonviral gene and cell therapy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schaffer, D. V., Koerber, J. T., & Lim, K. I. (2008). Molecular engineering of viral gene delivery vehicles. Annual Review of Biomedical Engineering, 10, 169–194.

    Article  CAS  Google Scholar 

  2. Pişkin, E. (2005). Stimuli-responsive polymers in gene delivery. Expert Review of Medical Devices, 2, 501–509.

    Article  Google Scholar 

  3. Schmidt-Wolf, G. D., & Schmidt-Wolf, I. G. (2003). Non-viral and hybrid vectors in human gene therapy: An update. Trends in Molecular Medicine, 9, 67–72.

    Article  CAS  Google Scholar 

  4. Lonez, C., Vandenbranden, M., & Ruysschaert, J. M. (2008). Cationic liposomal lipids: From gene carriers to cell signaling. Progress in Lipid Research, 47, 340–347.

    Article  CAS  Google Scholar 

  5. Midoux, P., Breuzard, G., Gomez, J. P., & Pichon, C. (2008). Polymer-based gene delivery: A current review on the uptake and intracellular trafficking of polyplexes. Current Gene Therapy, 8, 335–352.

    Article  CAS  Google Scholar 

  6. Dufès, C., Uchegbu, I. F., & Schätzlein, A. G. (2005). Dendrimers in gene delivery. Advanced Drug Delivery Reviews, 57, 2177–2202.

    Article  Google Scholar 

  7. Vicennati, P., Giuliano, A., Ortaggi, G., & Masotti, A. (2008). Polyethylenimine in medicinal chemistry. Current Medicinal Chemistry, 15, 2826–2839.

    Article  CAS  Google Scholar 

  8. Vázquez, E., Ferrer-Miralles, N., & Villaverde, A. (2008). Peptide-assisted traffic engineering for nonviral gene therapy. Drug Discovery Today, 13, 1067–1074.

    Article  Google Scholar 

  9. Ravi Kumar, M., Hellermann, G., Lockey, R. F., & Mohapatra, S. S. (2004). Nanoparticle-mediated gene delivery: State of the art. Expert Opinion on Biological Therapy, 4, 1213–1224.

    Article  CAS  Google Scholar 

  10. Luo, D., & Saltzman, W. M. (2000). Synthetic DNA delivery systems. Nature Biotechnology, 18, 33–37.

    Article  CAS  Google Scholar 

  11. Dinçer, S., Türk, M., & Pişkin, E. (2005). Intelligent polymers as nonviral vectors. Gene Therapy, 12, S139–S145.

    Article  Google Scholar 

  12. Oliveira, A. C., Ferraz, M. P., Monteiro, F. J., & Simões, S. (2009). Cationic liposome-DNA complexes as gene delivery vectors: Development and behaviour towards bone-like cells. Acta Biomaterialia, 5, 2142–2151.

    Article  CAS  Google Scholar 

  13. Barua, S., Joshi, A., Banerjee, A., Matthews, D., Sharfstein, S. T., Cramer, S. M., et al. (2009). Parallel synthesis and screening of polymers for nonviral gene delivery. Molecular Pharmaceutics, 6, 86–97.

    Article  CAS  Google Scholar 

  14. Kim, S. W., Ogawa, T., Tabata, Y., & Nishimura, I. (2004). Efficacy and cytotoxicity of cationic-agent-mediated nonviral gene transfer into osteoblasts. Journal of Biomedical Materials Research Part A, 71, 308–315.

    Google Scholar 

  15. Olton, D., Li, J., Wilson, M. E., Rogers, T., Close, J., Huang, L., et al. (2007). Nanostructured calcium phosphates (NanoCaPs) for non-viral gene delivery: Influence of the synthesis parameters on transfection efficiency. Biomaterials, 28, 1267–1279.

    Article  CAS  Google Scholar 

  16. Jen, C. P., Chen, Y. H., Fan, C. S., Yeh, C. S., Lin, Y. C., Shieh, D. B., et al. (2004). A nonviral transfection approach in vitro: The design of a gold nanoparticle vector joint with microelectromechanical systems. Langmuir, 20, 1369–1374.

    Article  CAS  Google Scholar 

  17. Elfinger, M., Geiger, J., Hasenpusch, G., Uzgün, S., Sieverling, N., Aneja, M. K., et al. (2009). Targeting of the β2-adrenoceptor increases nonviral gene delivery to pulmonary epithelial cells in vitro and lungs in vivo. Journal of Controlled Release, 135, 234–241.

    Article  CAS  Google Scholar 

  18. Lu, B., Xu, X. D., Zhang, X. Z., Cheng, S. X., & Zhuo, R. X. (2008). Low molecular weight polyethylenimine grafted N-maleated chitosan for gene delivery: Properties and in vitro transfection studies. Biomacromolecules, 9, 2594–2600.

    Article  CAS  Google Scholar 

  19. Zhang, Z., Sha, X., Shen, A., Wang, Y., Sun, Z., Gu, Z., et al. (2008). Polycation nanostructured lipid carrier, a novel nonviral vector constructed with triolein for efficient gene delivery. Biochemical and Biophysical Research Communications, 370, 478–482.

    Article  CAS  Google Scholar 

  20. Bajaj, A., Kondaiah, P., & Bhattacharya, S. (2008). Gene transfection efficacies of novel cationic gemini lipids possessing aromatic backbone and oxyethylene spacers. Biomacromolecules, 9, 991–999.

    Article  CAS  Google Scholar 

  21. Ou, M., Wang, X. L., Xu, R., Chang, C. W., Bull, D. A., & Kim, S. W. (2008). Novel biodegradable poly(disulfide amine)s for gene delivery with high efficiency and low cytotoxicity. Bioconjugate Chemistry, 19, 626–633.

    Article  CAS  Google Scholar 

  22. Gilbert, J. L., Purcell, J., Strappe, P., McCabe, M., O’Brien, T., & O’Dea, S. (2008). Comparative evaluation of viral, nonviral and physical methods of gene delivery to normal and transformed lung epithelial cells. Anti-Cancer Drugs, 19, 783–788.

    Article  CAS  Google Scholar 

  23. Caracciolo, G., Pozzi, D., Caminiti, R., Marchini, C., Montani, M., Amici, A., et al. (2007). Transfection efficiency boost by designer multicomponent lipoplexes. Biochimica et Biophysica Acta, 1768, 2280–2292.

    Article  CAS  Google Scholar 

  24. Shim, M. S., & Kwon, Y. J. (2008). Controlled delivery of plasmid DNA and siRNA to intracellular targets using ketalized polyethylenimine. Biomacromolecules, 9, 444–455.

    Article  CAS  Google Scholar 

  25. Krämer, M., Stumbé, J. F., Grimm, G., Kaufmann, B., Krüger, U., Weber, M., et al. (2004). Dendritic polyamines: Simple access to new materials with defined treelike structures for application in nonviral gene delivery. ChemBioChem, 5, 1081–1087.

    Article  Google Scholar 

  26. Marit, G., Cao, Y., Froussard, P., Ripoche, J., Dupouy, M., Elandaloussie, A., et al. (2000). Increased liposome-mediated gene transfer into haematopoietic cells grown in adhesion to stromal or fibroblast cell line monolayers. European Journal of Haematology, 64, 22–31.

    Article  CAS  Google Scholar 

  27. Weiskirchen, R., Kneifel, J., Weiskirchen, S., van de Leur, E., Kunz, D., & Gressner, A. M. (2000). Comparative evaluation of gene delivery devices in primary cultures of rat hepatic stellate cells and rat myofibroblasts. BMC Cell Biology, 1, 4.

    Article  CAS  Google Scholar 

  28. Akita, H., Ito, R., Khalil, I. A., Futaki, S., & Harashima, H. (2004). Quantitative three-dimensional analysis of the intracellular trafficking of plasmid DNA transfected by a nonviral gene delivery system using confocal laser scanning microscopy. Molecular Therapy, 9, 443–451.

    Article  CAS  Google Scholar 

  29. Hellgren, I., Drvota, V., Pieper, R., Enoksson, S., Blomberg, P., Islam, K. B., et al. (2000). Highly efficient cell-mediated gene transfer using non-viral vectors and FuGene6: In vitro and in vivo studies. Cellular and Molecular Life Sciences, 57, 1326–1333.

    Article  CAS  Google Scholar 

  30. Tachibana, R., Ide, N., Shinohara, Y., Harashima, H., Hunt, C. A., & Kiwada, H. (2004). An assessment of relative transcriptional availability from nonviral vectors. International Journal of Pharmaceutics, 270, 315–321.

    Article  CAS  Google Scholar 

  31. Orth, P., Weimer, A., Kaul, G., Kohn, D., Cucchiarini, M., & Madry, H. (2008). Analysis of novel nonviral gene transfer systems for gene delivery to cells of the musculoskeletal system. Molecular Biotechnology, 38, 137–144.

    Article  CAS  Google Scholar 

  32. Gopal, V., Prasad, T. K., Rao, N. M., Takafuji, M., Rahman, M. M., & Ihara, H. (2006). Synthesis and in vitro evaluation of glutamide-containing cationic lipids for gene delivery. Bioconjugate Chemistry, 17, 1530–1536.

    Article  CAS  Google Scholar 

  33. Kean, T., Roth, S., & Thanou, M. (2005). Trimethylated chitosans as non-viral gene delivery vectors: Cytotoxicity and transfection efficiency. Journal of Controlled Release, 103, 643–653.

    Article  CAS  Google Scholar 

  34. Wang, Y., Gao, S., Ye, W. H., Yoon, H. S., & Yang, Y. Y. (2006). Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer. Nature Materials, 5, 791–796.

    Article  CAS  Google Scholar 

  35. Sun, X., Ma, P., Cao, X., Ning, L., Tian, Y., & Ren, C. (2009). Positive hyaluronan/PEI/DNA complexes as a target-specific intracellular delivery to malignant breast cancer. Drug Delivery, 16, 357–362.

    Article  CAS  Google Scholar 

  36. Chen, J., Tian, H., Guo, Z., Xia, J., Kano, A., Maruyama, A., et al. (2009). A highly efficient siRNA carrier of PBLG modified hyperbranched PEI. Macromolecular Bioscience, 9, 1247–1253.

    Article  CAS  Google Scholar 

  37. Sakai, Y., Khajoee, V., Ogawa, Y., Kusuhara, K., Katayama, Y., & Hara, T. (2006). A novel transfection method for mammalian cells using gas plasma. Journal of Biotechnology, 121, 299–308.

    Article  CAS  Google Scholar 

  38. Zhang, Z., Yang, C., Duan, Y., Wang, Y., Liu, J., Wang, L., et al. (2010). Poly(ethylene glycol) analogs grafted with low molecular weight poly(ethylene imine) as non-viral gene vectors. Acta Biomaterialia, 6, 2650–2657.

    Article  CAS  Google Scholar 

  39. Zeng, X., Sun, Y. X., Zhang, X. Z., & Zhuo, R. X. (2009). Biotinylated disulfide containing PEI/avidin bioconjugate shows specific enhanced transfection efficiency in HepG2 cells. Organic and Biomolecular Chemistry, 7, 4201–4210.

    Article  CAS  Google Scholar 

  40. Yu, W., Liu, C., Ye, J., Zou, W., Zhang, N., & Xu, W. (2009). Novel cationic SLN containing a synthesized single-tailed lipid as a modifier for gene delivery. Nanotechnology, 20, 215102.

    Article  Google Scholar 

  41. Tros de Ilarduya, C. (2010). Serum-resistant lipoplexes in the presence of asialofetuin. Methods in Molecular Biology, 605, 425–434.

    Article  Google Scholar 

  42. Zeisig, R., Ress, A., Fichtner, I., & Walther, W. (2003). Lipoplexes with alkylphospholipid as new helper lipid for efficient in vitro and in vivo gene transfer in tumor therapy. Cancer Gene Therapy, 4, 302–311.

    Article  Google Scholar 

  43. Ou, M., Xu, R., Kim, S. H., Bull, D. A., & Kim, S. W. (2009). A family of bioreducible poly(disulfide amine)s for gene delivery. Biomaterials, 30, 5804–5814.

    Article  CAS  Google Scholar 

  44. Forrest, M. L., Meister, G. E., Koerber, J. T., & Pack, D. W. (2004). Partial acetylation of polyethylenimine enhances in vitro gene delivery. Pharmaceutical Research, 21, 365–371.

    Article  CAS  Google Scholar 

  45. Dodds, E., Dunckley, M. G., Naujoks, K., Michaelis, U., & Dickson, G. (1998). Lipofection of cultured mouse muscle cells: A direct comparison of Lipofectamine and DOSPER. Gene Therapy, 5, 542–551.

    Article  CAS  Google Scholar 

  46. Uchida, E., Mizuguchi, H., Ishii-Watabe, A., & Hayakawa, T. (2002). Comparison of the efficiency and safety of non-viral vectormediated gene transfer into a wide range of human cells. Biological and Pharmaceutical Bulletin, 25, 891–897.

    Article  CAS  Google Scholar 

  47. Armeanu, S., Pelisek, J., Krausz, E., Fuchs, A., Groth, D., Curth, R., et al. (2000). Optimization of nonviral gene transfer of vascular smooth muscle cells in vitro and in vivo. Molecular Therapy, 1, 366–375.

    Article  CAS  Google Scholar 

  48. Gebhart, C. L., & Kabanov, A. V. (2001). Evaluation of polyplexes as gene transfer agents. Journal of Controlled Release, 73, 401–416.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Mani Alikhani for providing the MC3T3-E1 and C3H10T1/2 cells, Dr. Peter Sacks for the PT-30 cells, and Dr. Xi Huang for providing the MCF-7, HeLa, C2C12, Hep G2, 4T1, and HCT116 cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiichi Yamano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamano, S., Dai, J. & Moursi, A.M. Comparison of Transfection Efficiency of Nonviral Gene Transfer Reagents. Mol Biotechnol 46, 287–300 (2010). https://doi.org/10.1007/s12033-010-9302-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9302-5

Keywords

Navigation