Skip to main content
Log in

CLA Supplementation and Aerobic Exercise Lower Blood Triacylglycerol, but Have No Effect on Peak Oxygen Uptake or Cardiorespiratory Fatigue Thresholds

  • Original Article
  • Published:
Lipids

Abstract

This study examined the effects of 6 weeks of conjugated linoleic acid (CLA) supplementation and moderate aerobic exercise on peak oxygen uptake (\(\dot{V}{\text{O}}_{ 2}\) peak), the gas exchange threshold (GET), the respiratory compensation point (RCP), and serum concentrations of cholesterol, triacylglycerol, and glucose in humans. Thirty-four untrained to moderately trained men (mean ± SD; age = 21.5 ± 2.8 years; mass = 77.2 ± 9.5 kg) completed this double-blind, placebo controlled study and were randomly assigned to either a CLA (Clarinol A-80; n = 18) or placebo (PLA; sunflower oil; n = 16) group. Prior to and following 6 weeks of aerobic training (50 % \(\dot{V}{\text{O}}_{ 2}\) peak for 30 min, twice per week) and supplementation (5.63 g of total CLA isomers [of which 2.67 g was c9, t11 and 2.67 g was t10, c12] or 7.35 g high oleic sunflower oil per day), each participant completed an incremental cycle ergometer test to exhaustion to determine their \(\dot{V}{\text{O}}_{ 2}\) peak, GET, and RCP and fasted blood draws were performed to measure serum concentrations of cholesterol, triacylglycerol, and glucose. Serum triacylglycerol concentrations were lower (p < 0.05) in the CLA than the PLA group. For \(\dot{V}{\text{O}}_{ 2}\) peak and glucose, there were group × time interactions (p < 0.05), however, post hoc statistical tests did not reveal any differences (p > 0.05) between the CLA and PLA groups. GET and RCP increased (p < 0.05) from pre- to post-training for both the CLA and PLA groups. Overall, these data suggested that CLA and aerobic exercise may have synergistic, blood triacylglycerol lowering effects, although CLA may be ineffective for enhancing aerobic exercise performance in conjunction with a 6-week aerobic exercise training program in college-age men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACSM:

American College of Sports Medicine

CLA:

Conjugated linoleic acid

DBP:

Diastolic blood pressure

GET:

Gas exchange threshold

GLUT4:

Glucose transporter-4

HR:

Heart rate

LDL:

Low density lipoprotein

PLA:

Placebo

PPAR:

Peroxisome proliferator-activated receptor

RCP:

Respiratory compensation point

SBP:

Systolic blood pressure

UCP-2:

Uncoupling protein 2

\(\dot{V}{\text{CO}}_{ 2}\) :

Carbon dioxide produced

VLDL:

Very low density lipoprotein

\(\dot{V}{\text{O}}_{ 2}\) peak:

Peak oxygen uptake

References

  1. Blankson H, Stakkestad JA, Fagertun H, Thom E, Wadstein J, Gudmundsen O (2000) Conjugated linoleic acid reduces body fat mass in overweight and obese humans. J Nutr 130:2943–2948

    CAS  PubMed  Google Scholar 

  2. Ritzenthaler KL, McGuire MK, Falen R, Shultz TD, Dasgupta N, McGuire MA (2001) Estimation of conjugated linoleic acid intake by written dietary assessment methodologies underestimates actual intake evaluated by food duplicate methodology. J Nutr 131:1548–1554

    CAS  PubMed  Google Scholar 

  3. Gaullier JM, Berven G, Blankson H, Gudmundsen O (2002) Clinical trial results support a preference for using CLA preparations enriched with two isomers rather than four isomers in human studies. Lipids 37:1019–1025

    Article  CAS  PubMed  Google Scholar 

  4. Bulut S, Bodur E, Colak R, Turnagol H (2013) Effects of conjugated linoleic acid supplementation and exercise on post-heparin lipoprotein lipase, butyrylcholinesterase, blood lipid profile and glucose metabolism in young men. Chem Biol Interact 203:323–329

    Article  CAS  PubMed  Google Scholar 

  5. Colakoglu S, Colakoglu M, Taneli F, Cetinoz F, Turkmen M (2006) Cumulative effects’ of conjugated linoleic acid and exercise on endurance development, body composition, serum leptin and insulin levels. J Sports Med Phys Fit 46(4):570–577

    CAS  Google Scholar 

  6. Kamphuis MM, Lejeune MP, Saris WH, Westerterp-Plantenga MS (2003) The effect of conjugated linoleic acid supplementation after weight loss on body weight regain, body composition, and resting metabolic rate in overweight subjects. Int J Obes 27:840–847

    Article  CAS  Google Scholar 

  7. Kim JH, Kim J, Park Y (2012) Trans-10, cis-12 conjugated linoleic acid enhances endurance capacity by increasing fatty acid oxidation and reducing glycogen utilization in mice. Lipids 47:855–863

    Article  CAS  PubMed  Google Scholar 

  8. Park Y, Albright KJ, Liu W, Storkson JM, Cook ME, Pariza MW (1997) Effect of conjugated linoleic acid on body composition in mice. Lipids 32:853–858

    Article  CAS  PubMed  Google Scholar 

  9. Zambell KL, Keim NL, Van Loan MD, Gale B, Benito P, Kelley DS, Nelson GJ (2000) Conjugated linoleic acid supplementation in humans: effects on body composition and energy expenditure. Lipids 35:777–782

    Article  CAS  PubMed  Google Scholar 

  10. Kim JH, Park HG, Pan JH, Kim SH, Yoon HG, Bae GS, Lee H, Eom SH, Kim YJ (2010) Dietary conjugated linoleic acid increases endurance capacity of mice during treadmill exercise. J Med Food 13:1057–1060

    Article  CAS  PubMed  Google Scholar 

  11. Lowell BB (1999) PPARgamma: an essential regulator of adipogenesis and modulator of fat cell function. Cell 99(3):239–242

    Article  CAS  PubMed  Google Scholar 

  12. Moya-Camarena SY, Heuvel JPV, Blanchard SG, Leesnitzer LA, Belury MA (1999) Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARα. J Lipid Res 40:1426–1433

    CAS  PubMed  Google Scholar 

  13. Mohankumar SK, Taylor CG, Siemens L, Zahradka P (2013) Activation of phosphatidylinositol-3 kinase, AMP-activated kinase and Akt substrate-160 kDa by trans-10, cis-12 conjugated linoleic acid mediates skeletal muscle glucose uptake. J Int Biochem 24:445–456

    CAS  Google Scholar 

  14. Echtay KS, Winkler E, Frischmuth K, Klingenberg M (2001) Uncoupling proteins 2 and 3 are highly active H+ transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc Natl Acad Sci USA 98:1416–1421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Son C, Hosoda K, Matsuda J, Fujikura J, Yonemitsue S, Iwakura H, Masuzaki H, Ogawa Y, Hayashi T, Itoh H, Nishimura H, Inoue G, Yoshimasa Y, Yamori Y, Nakao K (2001) Up-regulation of uncoupling protein 3 gene expression by fatty acids and agonists for PPARs in L6 myotubes. Endocrinology 142:4189–4194

    Article  CAS  PubMed  Google Scholar 

  16. Medina EA, Horn WF, Keim NL, Havel PJ, Benito P, Kelley DS, Nelson GJ, Erickson KL (2000) Conjugated linoleic acid supplementation in humans: effects on circulating leptin concentrations and appetite. Lipids 35:783–788

    Article  CAS  PubMed  Google Scholar 

  17. Noone EJ, Roche HM, Nugent AP, Gibney MJ (2002) The effect of dietary supplementation using isomeric blends of conjugated linoleic acid on lipid metabolism in healthy human subjects. Br J Nutr 88:243–251

    Article  CAS  PubMed  Google Scholar 

  18. Risérus U, Smedman A, Basu S, Vessby B (2003) CLA and body weight regulation in humans. Lipids 38:133–137

    Article  PubMed  Google Scholar 

  19. Smedman A, Vessby B (2001) Conjugated linoleic acid supplementation in humans—metabolic effects. Lipids 36:773–781

    Article  CAS  PubMed  Google Scholar 

  20. Lambert EV, Goedecke JH, Bluett K, Heggie K, Claassen A, Rae DE, West S, Dugas J, Dugas L, Meltzeri S, Charlton K, Mohede I (2007) Conjugated linoleic acid versus high-oleic acid sunflower oil: effects on energy metabolism, glucose tolerance, blood lipids, appetite and body composition in regularly exercising individuals. Br J Nutr 97:1001–1011

    Article  CAS  PubMed  Google Scholar 

  21. Thom E, Wadstein J, Gudmundsen O (2001) Conjugated linoleic acid reduces body fat in healthy exercising humans. J Int Med Res 29:392–396

    Article  CAS  PubMed  Google Scholar 

  22. Terpstra AH (2004) Effect of conjugated linoleic acid on body composition and plasma lipids in humans: an overview of the literature. Am J Clin Nutr 79:352–361

    CAS  PubMed  Google Scholar 

  23. Mizunoya W, Haramizu S, Shibakusa T, Okabe Y, Fushiki T (2005) Dietary conjugated linoleic acid increases endurance capacity and fat oxidation in mice during exercise. Lipids 40:265–271

    Article  CAS  PubMed  Google Scholar 

  24. Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, Ham J, Kang H, Evans RM (2004) Regulation of muscle fiber type and running endurance by PPARδ. PLoS Biol 2(10):e294

    Article  PubMed Central  PubMed  Google Scholar 

  25. Macaluso F, Barone R, Catanese P, Carini F, Rizzuto L, Farina F, Di Felice V (2013) Do fat supplements increase physical performance? Nutrients 5:509–524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Ha YL, Jeong SB (2010) Effects of conjugated linoleic acid on body fat reduction and physical exercise enhancement of obese male middle school students. J Life Sci 20:1844–1850

    Article  Google Scholar 

  27. Camic CL, Housh TJ, Mielke M, Zuniga JM, Hendrix CR, Johnson GO, Schmidt RJ, Housh DJ (2010) The effects of 4 weeks of an arginine-based supplement on the gas exchange threshold and peak oxygen uptake. Appl Phys Nutr Metab 35:286–293

    Article  CAS  Google Scholar 

  28. Graef JL, Smith AE, Kendall KL, Fukuda DH, Moon JR, Beck TW, Cramer JT, Stout JR (2009) The effects of four weeks of creatine supplementation and high-intensity interval training on cardiorespiratory fitness: a randomized controlled trial. J Int Soc Sports Nutr 6:1–7

    Article  Google Scholar 

  29. Vanhatalo A, Bailey SJ, Blackwell JR, DiMenna FJ, Pavey TG, Wilkerson DP, Benjamin N, Winyard PG, Jones AM (2010) Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am J Physiol 299:R1121–R1131

    CAS  Google Scholar 

  30. Benito P, Nelson GJ, Kelley DS, Bartolini G, Schmidt PC, Simon V (2001) The effect of conjugated linoleic acid on plasma lipoproteins and tissue fatty acid composition in humans. Lipids 36:229–236

    Article  CAS  PubMed  Google Scholar 

  31. Day JR, Rossiter HB, Coats EM, Skasick A, Whipp BJ (2003) The maximally attainable VO2 during exercise in humans: the peak vs. maximum issue. J Appl Physiol 95(5):1901–1907

    CAS  PubMed  Google Scholar 

  32. Beaver WL, Wasserman KN, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60:2020–2027

    CAS  PubMed  Google Scholar 

  33. Pescatello LS (2013) ACSM’s guidelines for exercise testing and prescription, 9th edn. Wolters Kluwer/Lippincott Williams and Wilkins Health, Philadelphia

    Google Scholar 

  34. Housh TJ, Cramer JT, Weir JP, Beck TW, Johnson GO (2009) Physical fitness laboratories on a budget. Holcomb Hathaway, Scottsdale

    Google Scholar 

  35. Fruchart JC, Duriez P, Staels B (1999) Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr Opin Lipidol 10:245–258

    Article  CAS  PubMed  Google Scholar 

  36. Krämer DK, Al-Khalili L, Guigas B, Leng Y, Garcia-Roves PM, Krook A (2007) Role of AMP kinase and PPARdelta in the regulation of lipid and glucose metabolism in human skeletal muscle. J Biol Chem 282(27):19313–19320

    Article  PubMed  Google Scholar 

  37. Eyjolfson V, Spriet LL, Dyck DJ (2004) Conjugated linoleic acid improves insulin sensitivity in young, sedentary humans. Med Sci Sports Exerc 36:814–820

    Article  CAS  PubMed  Google Scholar 

  38. Magalang UJ, Grant BJ (1995) Determination of gas exchange threshold by nonparametric regression. Am J Respir Crit Care Med 151:98–106

    Article  CAS  PubMed  Google Scholar 

  39. Meyer T, Faude O, Scharhag J, Urhausen A, Kindermann W (2004) Is lactic acidosis a cause of exercise induced hyperventilation at the respiratory compensation point? Br J Sports Med 38(5):622–625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Krustrup P, Hellsten Y, Bangsbo J (2004) Intense interval training enhances human skeletal muscle oxygen uptake in the initial phase of dynamic exercise at high but not at low intensities. J Physiol 559:335–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Holloszy JO, Coyle EF (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol Resp Environ Exerc Physiol 56:831–838

    CAS  Google Scholar 

  42. Morgan TE, Cobb LA, Short FA, Ross R, Gunn DR (1971) Effects of long-term exercise on human muscle mitochondria. In: Pernow B, Saltin B (eds) Muscle metabolism during exercise, Advances in Experimental Medicine and Biology, vol 11. Springer, US, pp 87–95

  43. Baldwin KM, Klinkerfuss GH, Terjung RL, Molé PA, Holloszy JO (1972) Respiratory capacity of white, red, and intermediate muscle: adaptive response to exercise. Am J Physiol 222(2):373–378

    CAS  PubMed  Google Scholar 

  44. Henriksson J (1977) Training induced adaptation of skeletal muscle and metabolism during submaximal exercise. J Physiol 270:661–675

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Hurley BF, Hagberg JM, Allen WK, Seals DR, Young JC, Cuddihee RW, Holloszy JO (1984) Effect of training on blood lactate levels during submaximal exercise. J Appl Physiol 56:1260–1264

    CAS  PubMed  Google Scholar 

  46. Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, Raha S, Tarnopolsky MA (2006) Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol Lond 575(3):901–911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Burgomaster KA, Heigenhauser GJF, Gibala MJ (2006) Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. J Appl Physiol (1985) 100(6):2041–2047

    Article  Google Scholar 

  48. Green HJ, Burnett M, Jacobs I, Ranney D, Smith I, Tupling S (2013) Adaptations in muscle metabolic regulation require only a small dose of aerobic-based exercise. Eur J Appl Physiol 113(2):313–324

    Article  CAS  PubMed  Google Scholar 

  49. Green HJ, Burnett M, Carter S, Jacobs I, Ranney D, Smith I, Tupling S (2013) Role of exercise duration on metabolic adaptations in working muscle to short-term moderate-to-heavy aerobic-based cycle training. Eur J Appl Physiol 113(8):1965–1978

    Article  CAS  PubMed  Google Scholar 

  50. McKay BR, Paterson DH, Kowalchuk JM (2009) Effect of short-term high-intensity interval training vs. continuous training on O2 uptake kinetics, muscle deoxygenation, and exercise performance. J Appl Physiol (1985) 107(1):128–138

    Article  Google Scholar 

  51. Wasserman K, Hansen JE, Sietsema K, Sue DY (2011) Principles of Exercise testing and interpretation: including pathophysiology and clinical applications. Wolters Kluwer Health/Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  52. Bergstrom HC, Housh TJ, Zuniga JM, Traylor DA, Camic CL, Lewis RW Jr, Schmidt RJ, Johnson GO (2013) The relationships among critical power determined from a 3-min all-out test, respiratory compensation point, gas exchange threshold, and ventilatory threshold. Res Q Exerc Sport 84(2):232–238

    Article  PubMed  Google Scholar 

  53. Darabi S, Dehghan MH, Refahi S, Kiani E (2009) Ventilation, potassium and lactate during incremental exercise in men athletes. Res J Biol Sci 4:427–429

    Google Scholar 

  54. Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2013; 2. doi:10.1161/JAHA.112.004473

  55. Fagard R (2003) Athlete’s heart. Heart 89:1455–1461

    Article  PubMed Central  PubMed  Google Scholar 

  56. Pluim BM, Zwinderman AH, van der Laarse A, van der Wall EE (2000) The athlete’s heart a meta-analysis of cardiac structure and function. Circulation 101:336–344

    Article  CAS  PubMed  Google Scholar 

  57. Scharhag J, Schneider G, Urhausen A, Rochette V, Kramann B, Kindermann W (2002) Athlete’s heart: right and left ventricular mass and function in male endurance athletes and untrained individuals determined by magnetic resonance imaging. J Am Coll Cardiol 40(10):1856–1863

    Article  PubMed  Google Scholar 

  58. Maggioni MA, Ferratini M, Pezzano A, Heyman JE, Agnello L, Veicsteinas A, Merati G (2012) Heart adaptations to long-term aerobic training in paraplegic subjects: an echocardiographic study. Spinal Cord 50(7):538–542

    Article  CAS  PubMed  Google Scholar 

  59. Schubert MM, Desbrow B, Sabapathy S, Leveritt M (2013) Acute exercise and subsequent energy intake. A meta-analysis. Appetite 63:92–104

    Article  PubMed  Google Scholar 

  60. Schubert MM, Sabapathy S, Leveritt M, Desbrow B (2014) Acute exercise and hormones related to appetite regulation: a meta-analysis. Sports Med 44(3):387–403

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by a research grant from Stepan Specialty Products, LLC and in part by the University of Nebraska Agricultural Research Division with funds provided through the Hatch Act. Neither Stepan Specialty Products, LLC nor the University of Nebraska Agricultural Research Division had any involvement in the data collection, analysis and interpretation of the data, writing of the manuscript, or in the decision to submit the manuscript for publication. The results of the present study do not constitute endorsement of the product by the authors.

Conflict of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel T. Cramer.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenkins, N.D.M., Buckner, S.L., Cochrane, K.C. et al. CLA Supplementation and Aerobic Exercise Lower Blood Triacylglycerol, but Have No Effect on Peak Oxygen Uptake or Cardiorespiratory Fatigue Thresholds. Lipids 49, 871–880 (2014). https://doi.org/10.1007/s11745-014-3929-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-014-3929-0

Keywords

Navigation