Skip to main content
Log in

Dietary conjugated linoleic acid increases endurance capacity and fat oxidation in mice during exercise

  • Articles
  • Published:
Lipids

Abstract

Ingestion of CLA activates β-oxidation and causes loss of body fat in rodents. We investigated the effects of dietary CLA on endurance capacity and energy metabolism during exercis in mice. Five-week-old male BALB/c mice were fed a control diet containing 1.0% linoleic acid or a diet containing 0.5% CLA that replaced an equivalent amount of linoleic acid for 1 wk. The maximum swimming time until fatigue was significantly higher in the CLA-fed group than in the control group. During treadmill running, the respiratory exchange ratio was significantly lower in the CLA-fed group, but oxygen consumption did not differ significantly between groups, suggesting that FA contributed more as an energy substrate in the CLA-fed mice. The muscle lipoprotein lipase activity was significantly higher in the CLA-fed group than in the control group. These results suggest that CLA ingestion increases endurance exercise capacity by promoting fat oxidation during exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CPT:

carnitine palmitoyltransferase

LA:

linoleic acid

LPL:

lipoprotein lipase

PPAR:

peroxisome proliferator-activated receptor

RER:

respiratory exchange ratio

References

  1. Chin, S.F., Liu, W., Storkson, J.M., Ha, Y.L., and Pariza, M.W. (1992) Dietary Sources of Conjugated Dienoic Isomers of Linoleic Acid, a Newly Recognized Class of Anticarcinogens, J. Food Comp. Anal. 5, 185–197.

    Article  CAS  Google Scholar 

  2. Ha, Y.L., Grimm, N.K., and Pariza, M.W. (1987) Anticarcinogens from Fried Ground Beef: Heat-Altered Derivatives of Linoleic Acid, Carcinogenesis 8, 1881–1887.

    Article  PubMed  CAS  Google Scholar 

  3. Ha, Y.L., Grimm, N.K., and Pariza, M.W. (1989) Newly Recognized Anticarcinogenic Fatty Acids: Identification and Quantification in Natural and Processed Cheeses, J. Agric. Food Chem. 37, 75–81.

    Article  CAS  Google Scholar 

  4. Chew, B.P., Wong, T.S., Shultz, T.D., and Magnuson, N.S. (1997) Effects of Conjugated Dienoic Derivatives of Linoleic Acid and Beta-Carotene in Modulating Lymphocyte and Macrophage Function, Anticancer Res. 17, 1099–1106.

    PubMed  CAS  Google Scholar 

  5. Ip, C., Scimeca, J., and Thompson, H.J. (1994) Conjugated Linoleic Acid: A Powerful Anticarcinogen from Animal Fat Sources, Cancer 74, 1050–1054.

    Article  PubMed  CAS  Google Scholar 

  6. Ip, C., Singh, M., Thompson, H.J., and Scimeca, J.A. (1994) Conjugated Linoleic Acid Suppresses Mammary Carcinogenesis and Proliferative Activity of the Mammary Gland in the Rat, Cancer Res. 54, 1212–1215.

    PubMed  CAS  Google Scholar 

  7. Shultz, T.D., Chew, B.P., and Seaman, W.R. (1992) Differential Stimulatory and Inhibitory Responses of Human MCF-7 Breast Cancer Cells to Linoleic Acid and Conjugated Linoleic Acid in Culture, Anticancer Res. 12, 2143–2145.

    PubMed  CAS  Google Scholar 

  8. Visonneau, S., Cesano, A., Tepper, S.A, Scimeca, J.A., Santoli, D. and Kritchevsky, D. (1997) Conjugated Linoleic Acid Suppresses the Growth of Human Breast Adenocarcinoma Cells in SCID Mice, Anticancer Res. 17, 969–973.

    PubMed  CAS  Google Scholar 

  9. Lee, K.N., Kritchevsky, D., and Pariza, M.W (1994) Conjugated, Linoleic Acid and Atherosclerosis in Rabbits, Atherosclerosis 108, 19–25.

    Article  PubMed  CAS  Google Scholar 

  10. Nicolosi, R.J., Rogers, E.J., Kritchevsky, D., Scimeca, J.A., and Huth, P.J. (1997) Dietary Conjugated Linoleic Acid Reduces Plasma Lipoproteins and Early Aortic Atherosclerosis in Hypercholesterolemic Hamsters, Artery 22, 266–277.

    PubMed  CAS  Google Scholar 

  11. Belury, M.A., and Kempa-Steczko, A. (1997) Conjugated Linoleic Acid Modulates Hepatic Lipid Composition in Mice, Lipids 32, 199–204.

    Article  PubMed  CAS  Google Scholar 

  12. Park, Y., Albright, K.J., Liu, W., Storkson, J.M., Cook, M.E., and Pariza, M.W. (1997) Effect of Conjugated Linoleic Acid on Body Composition in Mice, Lipids 32, 853–858.

    Article  PubMed  CAS  Google Scholar 

  13. West, D.B., Delany, J.P., Camet, P.M., Blohm, F., Truett, A.A., and Scimeca, J. (1998) Effects of Conjugated Linoleic Acid on Body Fat and Energy Metabolism in the Mouse, Am. J. Physiol. 275, R667-R672.

    PubMed  CAS  Google Scholar 

  14. Ohnuki, K., Haramizu, S., Ishihara, K., and Fushiki, T. (2001) Increased Energy Metabolism and Suppressed Body Fat Accumulation in Mice by a Low Concentration of Conjugated Linoleic Acid, Biosci. Biotechnol. Biochem. 65, 2200–2204.

    Article  PubMed  CAS  Google Scholar 

  15. Nagao, K., Wang, Y.M., Inoue, N., Han, S.Y., Buang, Y., Noda, T., Kouda, N., Okamatsu, H., and Yanagita, T. (2003) The 10trans,12cis Isomer of Conjugated Linoleic Acid Promotes Energy Metabolism in OLETF Rats, Nutrition 19, 652–656.

    Article  PubMed  CAS  Google Scholar 

  16. Ohnuki, K., Haramizu, S., Oki, K., Ishihara, K., and Fushiki, T. (2001) A Single Oral Administration of Conjugated Linoleic Acid Enhanced Energy Metabolism in Mice, Lipids 36, 583–587.

    Article  PubMed  CAS  Google Scholar 

  17. Rahman, S.M., Wang, Y., Yotsumoto, H., Cha, J., Han, S., Inoue, S., and Yanagita, T. (2001) Effects of Conjugated Linoleic Acid on Serum Leptin Concentration, Body-Fat Accumulation, and β-Oxidation of Fatty Acid in OLETF Rats, Nutrition 17, 385–390.

    Article  PubMed  CAS  Google Scholar 

  18. Maughan, R.J. (1998) The Sports Drink as a Functional Food: Formulations for Successful Performance, Proc. Nutr. Soc. 57, 15–23.

    Article  PubMed  CAS  Google Scholar 

  19. Williams, C. (1998) Dietary Macro- and Micronutrient Requirements of Endurance Athletes, Proc. Nutr. Soc. 57, 1–8.

    Article  PubMed  CAS  Google Scholar 

  20. Kim, K.M., Kawada, T., Ishihara, K., Inoue, K., and Fushiki, T. (1997) Increase in Swimming Endurance Capacity of Mice by Capsaicin-Induced Adrenal Catecholamine Secretion, Biosci. Biotechnol. Biochem. 61, 1718–1723.

    Article  PubMed  CAS  Google Scholar 

  21. Mizunoya, W., Oyaizu, S., Ishihara, K., and Fushiki, T. (2002) Protocol for Measuring the Endurance Capacity of Mice in an Adjustable-Current Swimming Pool, Biosci. Biotechnol. Biochem. 66, 1133–1136.

    Article  PubMed  CAS  Google Scholar 

  22. Hassid, W.Z., and Abraham S. (1957) Chemical Procedure for Analysis of Polysaccharides: Determination of Glycogen and Starch, Methods Enzymol. 3, 34–37.

    Google Scholar 

  23. Matsumoto, K., Ishihara, K., Tanaka, K., Inoue, K., and Fushiki, T. (1996) An Adjustable-Current Swimming Pool for the Evaluation of Endurance Capacity of Mice, J. Appl. Physiol. 81, 1843–1849.

    PubMed  CAS  Google Scholar 

  24. Ishihara, K., Oyaizu, S., Onuki, K., Lim, K., and Fushiki, T. (2000) Chronic (-)-Hydroxycitrate Administration Spares Carbohydrate Utilization and Promotes Lipid Oxidation During Exercise in Mice, J. Nutr. 130, 2990–2995.

    PubMed  CAS  Google Scholar 

  25. Saito, M., Ishihara, K., Onuki, K., Inoue, K., and Fushiki, T. (1998) Effect of Nanpao®, a Mixture of 31 Chinese Crude Drugs, on Increasing Endurance Exercise Performance of Swimming Mice, Nat. Med. 52, 14–21.

    Google Scholar 

  26. Fushiki, T., Matsumoto, K., Inoue, K., Kawada, T., and Sugimoto, E. (1995) Swimming Endurance Capacity of Mice Is Increased by Chronic Consumption of Medium-Chain Triglycerides, J. Nutr. 125, 531–539.

    PubMed  CAS  Google Scholar 

  27. Yamazaki, H., Arai, M., Matsumura, S., Inoue, K., and Fushiki, T. (2002) Intracranial Administration of Transforming Growth Factor-β3 Increases Fat Oxidation in Rats, Am. J. Physiol. 283, E536-E544.

    CAS  Google Scholar 

  28. Taskinen, M.R., Nikkila, E.A., Huttunen, J.K., and Hilden, H. (1980) A Micromethod for Assay of Lipoprotein Lipase Activity in Needle Biopsy Samples of Human Adipose Tissue and Skeletal Muscle, Clin. Chim. Acta 104, 107–117.

    Article  PubMed  CAS  Google Scholar 

  29. DeLany, J.P., Blohm, F., Truett, A.A., Scimeca, J.A., and West, D.B. (1999) Conjugated Linoleic Acid Rapidly Reduces Body Fat Content in Mice Without Affecting Energy Intake, Am. J. Physiol. 276, R1172-R1179.

    PubMed  CAS  Google Scholar 

  30. West, D.B., Blohm, F.Y., Truett A.A., and DeLany, J.P. (2000) Conjugated Linoleic Acid Persistently Increases Total Energy Expenditure in AKR/J Mice Without Increasing Uncoupling Protein Gene Expression, J. Nutr. 130, 2471–2477.

    PubMed  CAS  Google Scholar 

  31. Ahlborg, G., Felig, P., Hagenfeldt, L., Hendler, R., and Wahren, J. (1974) Substrate Turnover During Prolonged Exercise in Man. Splanchnic and Leg Metabolism of Glucose, Free Fatty Acids, and Amino Acids, J. Clin. Invest. 53, 1080–1090.

    PubMed  CAS  Google Scholar 

  32. Coyle, E.F. (1995) Substrate Utilization During Exercise in Active People, Am. J. Clin. Nutr. 61, 968S-979S.

    PubMed  CAS  Google Scholar 

  33. Wahren, J., Felig, P., Ahlborg, G., and Jorfeldt, L. (1971) Glucose Metabolism During Leg Exercise in Man, J. Clin. Invest. 50, 2715–2725.

    PubMed  CAS  Google Scholar 

  34. Bergstrom, J., Hermansen, L., Hultman, E., and Saltin, B. (1967) Diet, Muscle Glycogen and Physical Performance, Acta Physiol. Scand. 71, 140–150.

    Article  PubMed  CAS  Google Scholar 

  35. Miller, W.C., Bryce, G.R., and Conlee, R.K. (1984) Adaptations to a High-Fat Diet That Increase Exercise Endurance in Male Rats, J. Appl. Physiol. 56, 78–83.

    PubMed  CAS  Google Scholar 

  36. Nakamura, M., Brown, J., and Miller, W.C. (1998) Glycogen Depletion Patterns in Trained Rats Adapted to a High-Fat or High-Carbohydrate Diet, Int. J. Sports Med. 19, 419–424.

    Article  PubMed  CAS  Google Scholar 

  37. Spriet, L.L., MacLean, D.A., Dyck, D.J., Hultman, E., Cederblad, G., and Graham, T.E. (1992) Caffeine Ingestion and Muscle Metabolism During Prolonged Exercise in Humans, Am. J. Physiol. 262, E891-E898.

    PubMed  CAS  Google Scholar 

  38. Kiens, B., and Lithell, H. (1989) Lipoprotein Metabolism Influenced by Training-Induced Changes in Human Skeletal Muscle, J. Clin. Invest. 83, 558–564.

    Article  PubMed  CAS  Google Scholar 

  39. Xu, X., Storkson J., Kim, S., Sugimoto, K., Park, Y., and Pariza, M.W. (2003) Short-Term Intake of Conjugated Linoleic Acid Inhibits Lipoprotein Lipase and Glucose Metabolism but Does Not Enhance Lipolysis in Mouse Adipose Tissue, J. Nutr. 133, 663–667.

    PubMed  CAS  Google Scholar 

  40. Ong, J.M., Simsolo, R.B., Saghizadeh, M., Goers, J.W., and Kern, P.A. (1995) Effects of Exercise Training and Feeding on Lipoprotein Lipase Expression in Adipose Tissue, Heart, and Skeletal Muscle of the Rat, Metabolism 44, 1596–1605.

    Article  PubMed  CAS  Google Scholar 

  41. Moya-Camarena, S.Y., Van den Heuvel, J.P., Blanchard, S.G., Lessnitzer, L.A., and Belury, M.A. (1999) Conjugated Linoleic Acid Is a Potent Naturally Occurring Ligand and Activator of PPARα, J. Lipid Res. 40, 1426–1433.

    PubMed  CAS  Google Scholar 

  42. Schoonjans, K., Staels, B., and Auwerx, J. (1996) The Peroxisome Proliferator Activated Receptors (PPARs) and Their Effects on Lipid Metabolism and Adipocyte Differentiation, Biochim. Biophys. Acta 1302, 93–109.

    PubMed  CAS  Google Scholar 

  43. Peters, J.M., Park, Y., Gonzalez, F.J., and Pariza, M.W. (2001) Influence of Conjugated Linoleic Acid on Body Composition and Target Gene Expression in Peroxisome Proliferator-Activated Receptor α-Null Mice, Biochim. Biophys. Acta 1533, 233–242.

    PubMed  CAS  Google Scholar 

  44. McNeel, R.L., Smith, E.O., and Mersmann, H.J. (2003) Isomers of Conjugated Linoleic Acid Modulate Human Preadipocyte Differentiation, In Vitro Cell Dev. Biol. Anim. 39, 375–382.

    Article  PubMed  CAS  Google Scholar 

  45. Park, Y., Storkson, J.M., Albright, K.J., Liu, W., and Pariza, M.W. (1999) Evidence That the trans-10,cis-12 Isomer of Conjugated Linoleic Acid Induces Body Composition Changes in Mice, Lipids 34, 235–241.

    Article  PubMed  CAS  Google Scholar 

  46. Kang, K., Liu, W., Albright, K.J., Park, Y., and Pariza, M.W. (2003) trans-10,cis-12 CLA Inhibits Differentiation of 3t3-L1 Adipocytes and Decreases PPAR γ Expression, Biochem. Biophys. Res. Commun. 303, 795–799.

    Article  PubMed  CAS  Google Scholar 

  47. Blankson, H., Stakkestad, J.A., Fagertun, H., Thom, E., Wadstein, J., and Gudmundsen, O. (2000) Conjugated Linoleic Acid Reduces Body Fat Mass in Overweight and Obese Humans, J. Nutr. 130, 2943–2948.

    PubMed  CAS  Google Scholar 

  48. Mougios, V., Matsakas, A., Petridou, A., Ring, S., Sagredos, A., Melissopoulou, A., Tsigilis, N., and Nikolaidis, M. (2001) Effect of Supplementation with Conjugated Linoleic Acid on Human Serum Lipids and body Fat, J. Nutr. Biochem. 12,. 585–594.

    Article  PubMed  CAS  Google Scholar 

  49. Zambell, K.L., Keim, N.L., Van Loan, M.D., Gale, B., Benito, P., Kelley, D.S., and Nelson, G.J. (2000) Conjugated Linoleic Acid Supplementation in Humans: Effects on Body Composition and Energy Expenditure, Lipids 35, 777–782.

    Article  PubMed  CAS  Google Scholar 

  50. Zambell, K.L., Horn, W.F., and Keim, N.L. (2001) Conjugated Linoleic Acid Supplementation in Huamns: Effects on Fatty Acid and Glycerol Kinetics, Lipids 36, 767–772.

    Article  PubMed  CAS  Google Scholar 

  51. Smedman, A., Vessby, B., and Basu, S. (2004) Isomer-Specific Effects of Conjugated Linoleic Acid on Lipid Peroxidation in Humans: Regulation by α-Tocopherol and Cyclo-oxygenase-2 Inhibitor, Clin. Sci. (London) 106, 67–73.

    CAS  Google Scholar 

  52. Riserus, U., Smedman, A., Basu, S., and Vessby, B. (2004) Metabolic Effects of Conjugated Linoleic Acid in Humans: The Swedish Experience, Am. J. Clin. Nutr. 79, 1146S-1148S.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Fushiki.

About this article

Cite this article

Mizunoya, W., Haramizu, S., Shibakusa, T. et al. Dietary conjugated linoleic acid increases endurance capacity and fat oxidation in mice during exercise. Lipids 40, 265–271 (2005). https://doi.org/10.1007/s11745-005-1381-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-005-1381-5

Keywords

Navigation