Skip to main content
Log in

Biosynthesis of Long Chain Polyunsaturated Fatty Acids in the Marine Ichthyosporean Sphaeroforma arctica

  • Original Article
  • Published:
Lipids

Abstract

Sphaeroforma arctica is a unique, recently discovered marine protist belonging to a group falling close to the yeast/animal border. S. arctica is found in cold environments, and accordingly has a fatty acid composition containing a high proportion of very long chain polyunsaturated fatty acids, including the ω3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA). Two elongases and five desaturases, representing the complete set of enzymes necessary for the synthesis of DHA from oleic acid, were isolated from this species and characterized in yeast. One elongase showed high conversion rates on a wide range of 18 and 20 carbon substrates, and was capable of sequential elongation reactions. The second elongase had a strong preference for the 20-carbon fatty acids EPA and arachidonic acid, with over 80 % of EPA converted to docosapentaenoic acid (DPA) in the heterologous yeast host. The isolation of a Δ8-desaturase, along with the detection of eicosadienoic acid in S. arctica cultures indicated that this species uses the alternate Δ8-pathway for the synthesis of long-chain polyunsaturated fatty acids. S. arctica also carried a Δ4-desaturase that proved to be very active in the production of DHA from DPA. Finally, a long chain acyl-CoA synthetase from S. arctica improved DHA uptake in the heterologous yeast host and led to an improvement in desaturation and elongation efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

VLCPUFA:

Very long chain polyunsaturated fatty acid(s)

EPA:

Eicosapentaenoic acid

DHA:

Docosahexaenoic acid

DPA:

Docosapentaenoic acid

OA:

Oleic acid

LA:

Linoleic acid

ALA:

α-Linolenic acid

GLA:

γ-Linolenic acid

DGLA:

Dihomo-γ-linolenic acid

ARA:

Arachidonic acid

SDA:

Stearidonic acid

EDA:

Eicosadienoic acid

ETA:

Eicosatetraenoic acid

PA:

Palmitoleic acid

SA:

Stearic acid

FAME:

Fatty acid methyl ester(s)

References

  1. Jøstensen J-P, Sperstad S, Johansen S, Landfald B (2002) Molecular-phylogenetic, structural and biochemical features of a cold-adapted, marine ichthyosporean near the animal-fungal divergence, described from in vitro cultures. Eur J Protistol 38:93–104

    Article  Google Scholar 

  2. Ragan MA, Murphy CA, Rand TG (2003) Are Ichthyosporea animals or fungi? Bayesian phylogenetic analysis of elongation factor 1α of Ichthyophonus irregularis. Mol Phylogenet Evol 29:550–562

    Article  PubMed  CAS  Google Scholar 

  3. Ruiz-Trillo I, Lane CE, Archibald JM, Roger AJ (2006) Insights into the evolutionary origin and genome architecture of the unicellular opisthokonts Capsaspora owczarzaki and Sphaeroforma arctica. J Eukaryot Microbiol 53:379–384

    Article  PubMed  CAS  Google Scholar 

  4. Shalchian-Tabrizi K, Minge MA, Espelund M, Orr R, Ruden T, Jakobsen KS, Cavalier-Smith T (2008) Multigene phylogeny of Choanozoa and the origin of animals. PLoS One 3:e2098

    Article  PubMed  Google Scholar 

  5. Torruella G, Derelle R, Paps J, Lang BF, Roger AJ, Shalchian-Tabrizi K, Ruiz-Trillo I (2012) Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single-copy protein domains. Mol Biol Evol 29:531–544

    Article  PubMed  CAS  Google Scholar 

  6. Birch EE, Garfield S, Hoffman DR, Uauy R, Birch DG (2000) A randomized controlled trial of early dietary supply of long-chain polyunsaturated fatty acids and mental development in term infants. Dev Med Child Neurol 42:174–181

    Article  PubMed  CAS  Google Scholar 

  7. Kris-Etherton PM, Harris WS, Appel LJ, American heart association. Nutrition Committee (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106:2747–2757

    Article  PubMed  Google Scholar 

  8. Hoffman DR, Birch EE, Birch DG, Uauy R, Castañeda YS, Lapus MG, Wheaton DH (2000) Impact of early dietary intake and blood lipid composition of long-chain polyunsaturated fatty acids on later visual development. J Pediatr Gastroenterol Nutr 31:540–553

    Article  PubMed  CAS  Google Scholar 

  9. Riediger ND, Othman RA, Suh M, Moghadasian MH (2009) A systemic review of the roles of n-3 fatty acids in health and disease. J Am Diet Assoc 109:668–679

    Article  PubMed  CAS  Google Scholar 

  10. Beaudoin F, Michaelson LV, Hey SJ, Lewis MJ, Shewry PR, Sayanova O, Napier JA (2000) Heterologous reconstitution in yeast of the polyunsaturated fatty acid biosynthetic pathway. Proc Natl Acad Sci USA 97:6421–6426

    Article  PubMed  CAS  Google Scholar 

  11. Parker-Barnes JM, Das T, Bobik E, Leonard AE, Thurmond JM, Chaung LT, Huang YS, Mukerji P (2000) Identification and characterization of an enzyme involved in the elongation of n-6 and n-3 polyunsaturated fatty acids. Proc Natl Acad Sci USA 97:8284–8289

    Article  PubMed  CAS  Google Scholar 

  12. Michaelson LV, Lazarus CM, Griffiths G, Napier JA, Stobart AK (1998) Isolation of a Δ5-fatty acid desaturase gene from Mortierella alpina. J Biol Chem 273:19055–19059

    Article  PubMed  CAS  Google Scholar 

  13. Qiu X, Hong H, MacKenzie SL (2001) Identification of a Δ4 fatty acid desaturase from Thraustochytrium sp. involved in the biosynthesis of docosahexanoic acid by heterologous expression in Saccharomyces cerevisiae and Brassica juncea. J Biol Chem 276:31561–31566

    Article  PubMed  CAS  Google Scholar 

  14. Meyer A, Kirsch H, Domergue F, Abbadi A, Sperling P, Bauer J, Cirpus P, Zank TK, Moreau H, Roscoe TJ, Zähringer U, Heinz E (2004) Novel fatty acid elongases and their use for the reconstitution of docosahexaenoic acid biosynthesis. J Lipid Res 45:1899–1909

    Article  PubMed  CAS  Google Scholar 

  15. Pereira SL, Leonard AE, Huang YS, Chuang LT, Mukerji P (2004) Identification of two novel microalgal enzymes involved in the conversion of the ω3-fatty acid, eicosapentaenoic acid, into docosahexaenoic acid. Biochem J 384:357–366

    Article  PubMed  CAS  Google Scholar 

  16. Damude HG, Zhang H, Farrall L, Ripp KG, Tomb JF, Hollerbach D, Yadav NS (2006) Identification of bifunctional Δ12/ω3 fatty acid desaturases for improving the ratio of ω3 to ω6 fatty acids in microbes and plants. Proc Natl Acad Sci USA 103:9446–9451

    Article  PubMed  CAS  Google Scholar 

  17. Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier JA, Stobart AK, Lazarus CM (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22:739–745

    Article  PubMed  CAS  Google Scholar 

  18. Robert SS, Singh SP, Zhou X-R, Petrie JR, Blackburn SI, Mansour PM, Nichols PD, Liu Q, Green AG (2005) Metabolic engineering of Arabidopsis to produce nutritionally important DHA in seed oil. Funct Plant Biol 32:473–479

    Article  CAS  Google Scholar 

  19. Wu G, Truksa M, Datla N, Vrinten P, Bauer J, Zank T, Cirpus P, Heinz E, Qiu X (2005) Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat Biotechnol 23:1013–1017

    Article  PubMed  CAS  Google Scholar 

  20. Cheng B, Wu G, Vrinten P, Falk K, Bauer J, Qiu X (2010) Towards the production of high levels of eicosapentaenoic acid in transgenic plants: the effects of different host species, genes and promoters. Transgenic Res 19:221–229

    Article  PubMed  CAS  Google Scholar 

  21. Stoffel W (1961) Biosynthesis of polyenoic fatty acids. Biochem Biophys Res Commun 6:270–273

    Article  PubMed  CAS  Google Scholar 

  22. Korn ED (1964) Biosynthesis of unsaturated fatty acids in Acanthamoeba Sp. J Biol Chem 239:396–400

    PubMed  CAS  Google Scholar 

  23. Sayanova O, Haslam R, Qi B, Lazarus CM, Napier JA (2006) The alternative pathway C20 Δ8-desaturase from the non-photosynthetic organism Acanthamoeba castellanii is an atypical cytochrome b5-fusion desaturase. FEBS Lett 580:1946–1952

    Article  PubMed  CAS  Google Scholar 

  24. Hulanicka D, Erwin J, Bloch K (1964) Lipid metabolism of Euglena gracilis. J Biol Chem 239:2778–2787

    PubMed  CAS  Google Scholar 

  25. Wallis JG, Browse J (1999) The Δ8-desaturase of Euglena gracilis: an alternate pathway for synthesis of 20-carbon polyunsaturated fatty acids. Arch Biochem Biophys 365:307–316

    Article  PubMed  CAS  Google Scholar 

  26. Sayanova O, Haslam RP, Calerón MV, López NR, Worthy C, Rooks P, Allen MJ, Napier JA (2011) Identification and functional characterisation of genes encoding the omega-3 polyunsaturated fatty acid biosynthetic pathway from the coccolithophore Emiliania huxleyi. Phytochemistry 72:594–600

    Article  PubMed  CAS  Google Scholar 

  27. Zhou XR, Robert SS, Petrie JR, Frampton DM, Mansour MP, Blackburn SI, Nichols PD, Green AG, Singh SP (2007) Isolation and characterization of genes from the marine microalga Pavlova salina encoding three front-end desaturases involved in docosahexaenoic acid biosynthesis. Phytochemistry 68:785–796

    Article  PubMed  CAS  Google Scholar 

  28. Chu FL, Lund E, Soudant P, Harvey E (2002) De novo arachidonic acid synthesis in Perkinsus marinus, a protozoan parasite of the eastern oyster Crassostrea virginica. Mol Biochem Parasitol 119:179–190

    Article  PubMed  CAS  Google Scholar 

  29. Venegas-Calerón M, Beaudoin F, Sayanova O, Napier JA (2007) Co-transcribed genes for long chain polyunsaturated fatty acid biosynthesis in the protozoon Perkinsus marinus include a plant-like FAE1 3-ketoacyl coenzyme A synthase. J Biol Chem 282:2996–3003

    Article  PubMed  Google Scholar 

  30. Liu JW, DeMichele S, Bergana M, Bobik E Jr, Hastilow C, Chuang LT, Mukerji P, Huang YS (2001) Characterization of oil exhibiting high γ-linolenic acid from a genetically transformed canola strain. J Am Oil Chem Soc 78:489–493

    Article  CAS  Google Scholar 

  31. Nykiforuk CL, Shewmaker C, Harry I, Yurchenko OP, Zhang M, Reed C, Oinam GS, Zaplachinski S, Fidantsef A, Boothe JG, Moloney MM (2012) High level accumulation of gamma linolenic acid (C18:3Δ6,9,12 cis) in transgenic safflower (Carthamus tinctorius) seeds. Transgenic Res 21:367–381

    Article  PubMed  CAS  Google Scholar 

  32. Peyou-Ndi MM, Watts JL, Browse J (2000) Identification and characterization of an animal Δ12 fatty acid desaturase gene by heterologous expression in Saccharomyces cerevisiae. Arch Biochem Biophys 376:399–408

    Article  PubMed  CAS  Google Scholar 

  33. Huang YS, Chaudhary S, Thurmond JM, Bobik EG Jr, Yuan L, Chan GM, Kirchner SJ, Mukerji P, Knutzon DS (1999) Cloning of Δ12- and Δ6-desaturases from Mortierella alpina and recombinant production of γ-linolenic acid in Saccharomyces cerevisiae. Lipids 34:649–659

    Article  PubMed  CAS  Google Scholar 

  34. Hoffmann M, Hornung E, Busch S, Kassner N, Ternes P, Braus GH, Feussner I (2007) A small membrane-peripheral region close to the active center determines regioselectivity of membrane-bound fatty acid desaturases from Aspergillus nidulans. J Biol Chem 282:26666–26674

    Article  PubMed  CAS  Google Scholar 

  35. Domergue F, Spiekermann P, Lerchl J, Beckmann C, Kilian O, Kroth PG, Boland W, Zähringer U, Heinz E (2003) New insight into Phaeodactylum tricornutum fatty acid metabolism. Cloning and functional characterization of plastidial and microsomal Δ12-fatty acid desaturases. Plant Physiol 131:1648–1660

    Article  PubMed  CAS  Google Scholar 

  36. Covello PS, Reed DW (1996) Functional expression of the extraplastidial Arabidopsis thaliana oleate desaturase gene (FAD2) in Saccharomyces cerevisiae. Plant Physiol 111:223–226

    Article  PubMed  CAS  Google Scholar 

  37. Sakuradani E, Abe T, Iguchi K, Shimizu S (2005) A novel fungal ω3-desaturase with wide substrate specificity from arachidonic acid-producing Mortierella alpina 1S–4. Appl Microbiol Biotechnol 66:648–654

    Article  PubMed  CAS  Google Scholar 

  38. Pereira SL, Huang YS, Bobik EG, Kinney AJ, Stecca KL, Packer JC, Mukerji P (2004) A novel ω3-fatty acid desaturase involved in the biosynthesis of eicosapentaenoic acid. Biochem J 378:665–671

    Article  PubMed  CAS  Google Scholar 

  39. Reed DW, Schäfer UA, Covello PS (2000) Characterization of the Brassica napus extraplastidial linoleate desaturase by expression in Saccharomyces cerevisiae. Plant Physiol 122:715–720

    Article  PubMed  CAS  Google Scholar 

  40. Spychalla JP, Kinney AJ, Browse J (1997) Identification of an animal ω-3 fatty acid desaturase by heterologous expression in Arabidopsis. Proc Natl Acad Sci USA 94:1142–1147

    Article  PubMed  CAS  Google Scholar 

  41. Park WJ, Kothapalli KS, Lawrence P, Tyburczy C, Brenna JT (2009) An alternate pathway to long-chain polyunsaturates: the FADS2 gene product Δ8-desaturates 20:2n–6 and 20:3n–3. J Lipid Res 50:1195–1202

    Article  PubMed  CAS  Google Scholar 

  42. Monroig O, Li Y, Tocher DR (2011) Δ-8 desaturation activity varies among fatty acyl desaturases of teleost fish: high activity in Δ-6 desaturases of marine species. Comp Biochem Physiol B Biochem Mol Biol 159:206–213

    Article  PubMed  Google Scholar 

  43. Li Y, Monroig O, Zhang L, Wang S, Zheng X, Dick JR, You C, Tocher DR (2010) Vertebrate fatty acyl desaturase with Δ4 activity. Proc Natl Acad Sci USA 107:16840–16845

    Article  PubMed  CAS  Google Scholar 

  44. Hastings N, Agaba M, Tocher DR, Leaver MJ, Dick JR, Sargent JR, Teale AJ (2001) A vertebrate fatty acid desaturase with Δ5 and Δ6 activities. Proc Natl Acad Sci USA 98:14304–14309

    Article  PubMed  CAS  Google Scholar 

  45. Tonon T, Qing R, Harvey D, Li Y, Larson TR, Graham IA (2005) Identification of a long-chain polyunsaturated fatty acid acyl-coenzyme A synthetase from the diatom Thalassiosira pseudonana. Plant Physiol 138:402–408

    Article  PubMed  CAS  Google Scholar 

  46. Faergeman NJ, Black PN, Zhao XD, Knudsen J, DiRusso CC (2001) The acyl-CoA synthetases encoded within FAA1 and FAA4 in Saccharomyces cerevisiae function as components of the fatty acid transport system linking import, activation, and intracellular utilization. J Biol Chem 276:37051–37059

    Article  PubMed  CAS  Google Scholar 

  47. Bates PD, Ohlrogge JB, Pollard M (2007) Incorporation of newly synthesized fatty acids into cytosolic glycerolipids in pea leaves occurs via acyl editing. J Biol Chem 282:31206–31216

    Article  PubMed  CAS  Google Scholar 

  48. Bates PD, Durrett TP, Ohlrogge JB, Pollard M (2009) Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos. Plant Physiol 150:55–72

    Article  PubMed  CAS  Google Scholar 

  49. Scharnewski M, Pongdontri P, Mora G, Hoppert M, Fulda M (2008) Mutants of Saccharomyces cerevisiae deficient in acyl-CoA synthetases secrete fatty acids due to interrupted fatty acid recycling. FEBS J 275:2765–7278

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Andrew Roger, Jacqueline de Mestral, and Inaki Ruiz Trillo for providing cultures and advice on growing S. arctica. We also thank Ashley Fulton and Dan Contreras for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Vrinten.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1 (PDF 57 kb)

Supplementary Fig. 2 (PDF 118 kb)

About this article

Cite this article

Vrinten, P., Mavraganis, I., Qiu, X. et al. Biosynthesis of Long Chain Polyunsaturated Fatty Acids in the Marine Ichthyosporean Sphaeroforma arctica . Lipids 48, 263–274 (2013). https://doi.org/10.1007/s11745-012-3738-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-012-3738-2

Keywords

Navigation