Skip to main content
Log in

A novel fungal ω3-desaturase with wide substrate specificity from arachidonic acid-producing Mortierella alpina 1S-4

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A filamentous fungus, Mortierella alpina 1S-4, is capable of producing not only arachidonic acid (AA; 20:4n-6) but also eicosapentaenoic acid (EPA; 20:5n-3) below a cultural temperature of 20°C. Here, we describe the isolation and characterization of a gene (maw3) that encodes a novel ω3-desaturase from M. alpina 1S-4. Based on the conserved sequence information for M. alpina 1S-4 Δ12-desaturase and Saccharomyces kluyveri ω3-desaturase, the ω3-desaturase gene from M. alpina 1S-4 was cloned. Homology analysis of protein databases revealed that the amino acid sequence showed 51% identity, at the highest, with M. alpina 1S-4 Δ12-desaturase, whereas it exhibited 36% identity with Sac. kluyveri ω3-desaturase. The cloned cDNA was confirmed to encode the ω3-desaturase by its expression in the yeast Sac. cerevisiae. Analysis of the fatty acid composition of the yeast transformant demonstrated that 18-carbon and 20-carbon n-3 polyunsaturated fatty acids (PUFAs) were accumulated through conversion of exogenous 18-carbon and 20-carbon n-6 PUFAs. The substrate specificity of the M. alpina 1S-4 ω3-desaturase differs from those of the known fungal ω3-desaturases from Sac. kluyveri and Saprolegnia diclina. Plant, cyanobacterial and Sac. kluyveri ω3-desaturases desaturate 18-carbon n-6 PUFAs, Spr. diclina ω3-desaturase desaturates 20-carbon n-6 PUFAs and Caenorhabditis elegans ω3-desaturase prefers 18-carbon n-6 PUFAs as substrates rather than 20-carbon n-6 PUFAs. The substrate specificity of M. alpina 1S-4 ω3-desaturase is rather similar to that of C. elegans ω3-desaturase, but the M. alpina ω3-desaturase can more effectively convert AA into EPA when expressed in yeast. The M. alpina 1S-4 ω3-desaturase is the first known fungal desaturase that uses both 18-carbon and 20-carbon n-6 PUFAs as substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1994) Transformation by electroporation. Current protocols in molecular biology. Wiley, New York, pp 13.7.5–13.7.7

    Google Scholar 

  • Baoxiu Q, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier JA, Stobart AK, Lazarus CM (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22:739–745

    Article  PubMed  Google Scholar 

  • Carlson SE, Werkman SH, Peeples JM, Cooke RJ, Tolley EA (1993) Arachidonic acid status correlates with first year growth in preterm infants. Proc Natl Acad Sci USA 90:1073–1077

    CAS  PubMed  Google Scholar 

  • Gill I, Valivety R (1997) Polyunsaturated fatty acids. Part 1. Occurrence, biological activities and application. Trends Biotechnol 15:401–409

    Article  CAS  PubMed  Google Scholar 

  • Griffiths G, Stobart AK, Stymne S (1988) Δ6- and Δ12-desaturase activities and phosphatidic acid formation in microsomal preparations from the developing cotyledons of common borage. Biochem J 252:641–647

    CAS  PubMed  Google Scholar 

  • Jackson FM, Fraser TCM, Smith MA, Lazarus C, Stobart AK, Griffiths G (1998) Biosynthesis of C18 polyunsaturated fatty acids in microsomal membrane preparations from the filamentous fungus Mucor circinelloides. Eur J Biochem 252:513–519

    Article  CAS  PubMed  Google Scholar 

  • Jareonkitmongkol S, Kawashima H, Shirasaka N, Shimizu S, Yamada H (1992) Production of dihomo-γ-linolenic acid by a Δ5-desaturase-defective mutant of Mortierella alpina 1S-4. Appl Environ Microbiol 58:2196–2200

    CAS  Google Scholar 

  • Jareonkitmongkol S, Sakuradani E, Shimizu S (1993) A novel Δ5-desaturase-defective mutant of Mortierella alpina 1S-4 and its dihomo-γ-linolenic acid productivity. Appl Environ Microbiol 59:4300–4304

    CAS  Google Scholar 

  • Jareonkitmongkol S, Sakuradani E, Shimizu S (1994) Isolation and characterization of an ω3-desaturation-defective mutant of an arachidonic acid-producing fungus, Mortierella alpina 1S-4. Arch Microbiol 161:316–319

    Article  CAS  Google Scholar 

  • Meesapyodsuk D, Reed DW, Savile CK, Buist PH, Ambrose SJ, Covello PS (2000) Characterization of the regiochemistry and cryptoregiochemistry of a Caenorhabditis elegans fatty acid desaturase (FAT-1) expressed in Saccharomyces cerevisiae. Biochemistry 39:11948–11954

    Article  CAS  PubMed  Google Scholar 

  • Mori TA, Beilin LJ, Burke V, Morris J, Ritchie J (1997) Interactions between dietary fat, fish, and fish oils and their effects on platelet function in men at risk of cardiovascular disease. Arterioscler Thromb Vasc Biol 17:279–286

    CAS  PubMed  Google Scholar 

  • Oura T, Kajiwara S (2004) Saccharomyces kluyveri FAD3 encodes an ω3 fatty acid desaturase. Microbiology 150:1983–1990

    Article  CAS  PubMed  Google Scholar 

  • Pereira SL, Huang YS, Bobik EG, Kinney AJ, Stecca KL, Packer JCL, Mukerji P (2004) A novel ω3-fatty acid desaturase involved in the biosynthesis of eicosapentaenoic acid. Biochem J 378:665–671

    Article  CAS  PubMed  Google Scholar 

  • Petrini GA, Altabe SG, Uttaro AD (2004) Trypanosoma brucei oleate desaturase may use a cytochrome b5-like domain in another desaturase as an electron donor. Eur J Biochem 271:1079–1086

    Article  CAS  PubMed  Google Scholar 

  • Sakuradani E, Shimizu S (2003) Gene cloning and functional analysis of a second Δ6-fatty acid desaturase from an arachidonic acid-producing Mortierella fungus. Biosci Biotechnol Biochem 67:704–711

    Article  CAS  PubMed  Google Scholar 

  • Sakuradani E, Kobayashi M, Shimizu S (1999a) Δ9-Fatty acid desaturase from arachidonic acid-producing fungus. Unique gene sequence and its heterologous expression in a fungus, Aspergillus. Eur J Biochem 260:208–216

    Article  CAS  PubMed  Google Scholar 

  • Sakuradani E, Kobayashi M, Ashikari T, Shimizu S (1999b) Identification of Δ12-fatty acid desaturase from arachidonic acid-producing Mortierella fungus by heterologous expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. Eur J Biochem 261:812–820

    Article  CAS  PubMed  Google Scholar 

  • Sakuradani E, Kobayashi M, Shimizu S (1999c) Δ6-Fatty acid desaturase from an arachidonic acid-producing Mortierella fungus. Gene cloning and its heterologous expression in a fungus, Aspergillus. Gene 238:445–453

    Article  CAS  PubMed  Google Scholar 

  • Sakuradani E, Hirano Y, Kamada N, Nojiri M, Ogawa J, Shimizu S (2004) Improvement of arachidonic acid production by mutants with lower n-3 desaturation activity derived from Mortierella alpina 1S-4. Appl Microbiol Biotechnol (in press)

  • Shimizu S, Kawashima H, Shinmen Y, Akimoto K, Yamada H (1988) Production of eicosapentaenoic acid by Mortierella fungi. J Am Oil Chem Soc 65:1455–1459

    CAS  Google Scholar 

  • Shimokawa H (2001) Beneficial effects of eicosapentaenoic acid on endothelial vasodilator functions in animals and humans. World Rev Nutr Diet 88:100–108

    CAS  PubMed  Google Scholar 

  • Takeno S, Sakuradani E, Murata S, Inohara-Ochiai M, Kawashima H, Ashikari T, Shimizu S (2004) Establishment of an overall transformation system for an oil-producing filamentous fungus, Mortierella alpina 1S-4. Appl Microbiol Biotechnol 65:419–425

    Article  CAS  PubMed  Google Scholar 

  • Yamada H, Shimizu S, Shinmen Y (1987) Production of arachidonic acid by Mortierella elongata 1S-5. Agric Biol Chem 51:785–790

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research (No. 15658024, to S.S.) from the Ministry of Education, Science, Sports and Culture, Japan, by the COE for Microbial-Process Development Pioneering Future Production Systems (COE program of the Ministry of Education, Science, Sports and Culture, Japan, to S.S.) and by the Project of the New Energy and Industrial Technology Development Organization, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakayu Shimizu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakuradani, E., Abe, T., Iguchi, K. et al. A novel fungal ω3-desaturase with wide substrate specificity from arachidonic acid-producing Mortierella alpina 1S-4. Appl Microbiol Biotechnol 66, 648–654 (2005). https://doi.org/10.1007/s00253-004-1760-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1760-x

Keywords

Navigation