Skip to main content
Log in

Acyl Poly(Glycerol-Succinic Acid) Oligoesters: Synthesis, Physicochemical and Functional Properties, and Biodegradability

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Biobased surfactants were synthesized using poly(glycerol-succinate) as the polar head group and variable acyl groups as hydrophobic tails. Acyl chain lengths ranged from 8 to 14 carbon atoms. The resulting oligomeric surfactants were characterized by quantitative 13C nuclear magnetic resonance (NMR), acid values and size exclusion chromatography. Investigation of the physicochemical properties of the acyl poly(glycerol-succinate) surfactants revealed their potential for use in a wide array of applications. The acyl poly(glycerol-succinate) functional properties appeared to be particularly concentration-dependent. This study highlights the relative impact of acyl chain length on the polymeric structure, physicochemical and functional behaviors, and biodegradability of the acyl poly(glycerol-succinate) surfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Werpy T, Petersen G (2004) Top value added chemicals from biomass. US Department of Energy

  2. Cukalovic A, Stevens C (2008) Feasibility of production methods for succinic acid derivatives: a marriage of renewable resources and chemical technology. Biofuels Bioprod Bioref 2:505–529

    Article  CAS  Google Scholar 

  3. Minh DP, Besso M, Pinel C, Fuertes P, Petitjean C (2010) Aqueous-phase hydrogenation of biomass-based succinic acid to 1,4-butanediol over supported bimetallic catalysts. Top Catal 53:1270–1273

    Article  CAS  Google Scholar 

  4. Budarin V, Luque R, Macquarrie D, Clark J (2007) Towards a bio-based industry: benign catalytic esterifications of succinic acid in the presence of water. Chem Eur J 13:6914–6919

    Article  CAS  Google Scholar 

  5. Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Improved utilization of renewable resources: new important derivatives of glycerol. Green Chem 10:13–30

    Article  CAS  Google Scholar 

  6. Fangrui M, Milford AH (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    Article  Google Scholar 

  7. Nardello V, Chailloux N, Joly G, Aubry JM (2006) Preparation, amphiphilic properties and lyotropic phase behaviour of new surfactants based on sodium monoalkyl α, ω-dicarboxylates. Coll Surf A Physicochem Eng Asp 288:86–95

    Article  CAS  Google Scholar 

  8. Marchal F, Nardello-Rataj V, Chailloux N, Aubry JM, Tiddy GJT (2008) Lyotropic liquid crystal behaviour of azelate and succinate monoester surfactants based on fragrance alcohols. J Coll Interf Sci 321:177–185

    Article  CAS  Google Scholar 

  9. Renault B, Portella C, Marinkovic S, Estrine B (2012) Synthesis and surface properties of succinic end-capped alkyl-polyxylosides. J Surf Deterg 15:191–198

    Article  CAS  Google Scholar 

  10. Agach M, Moity L, Renault B, Marinkovic S, Estrine B, Nardello-Rataj V (2014) Succinylation of non-ionic surfactants: physicochemical characterization, functional properties, biodegradability, and mathematical modeling of the polarity tuning. J Surfact Deterg 17:591–602

    Article  CAS  Google Scholar 

  11. Foley P, Kermanshahi A, Beach ES, Zimmermann JB (2012) Derivation and synthesis of renewable surfactants. Chem Soc Rev 41:1499–1518

    Article  CAS  Google Scholar 

  12. Raffa P, Wever DAZ, Picchioni F, Broekhuis AA (2015) Polymeric surfactants: synthesis, properties and links to applications. Chem Rev 115:8504–8563

    Article  CAS  Google Scholar 

  13. Zhou YF, HuangYW Liu JY, Zhu XY, Yan DY (2010) Self-assembly of hyperbranched polymers and its biomedical applications. Adv Mater 22:4567–4590

    Article  CAS  Google Scholar 

  14. Gao C, Yan DY (2004) Hyperbranched polymers: from synthesis to applications. Prog Polym Sci 29:183–275

    Article  CAS  Google Scholar 

  15. Kim YH (1998) Hyperbranched polymers 10 years after. J Polym Sci Part A Polym Chem 36:1685–1698

    Article  CAS  Google Scholar 

  16. Liu H, Nasman JH, Skrifvars MJJ (2000) Radical alternating copolymerization: a strategy for hyperbranched materials. Polym Sci Part A Polym Chem 38:3074–3085

    Article  CAS  Google Scholar 

  17. Kuchanov S, Slot H, Stroks A (2004) Development of a quantitative theory of polycondensation. Prog Polym Sci 29:563–633

    Article  CAS  Google Scholar 

  18. Voit B, Lederer A (2009) Hyperbranched and highly branched polymer architectures—synthetic strategies and major characterization aspects. Chem Rev 109:5924–5973

    Article  CAS  Google Scholar 

  19. Schmaljohann D, Voit B (2003) Kinetic evolution of hyperbranched A2 + B3 polycondensation reactions. Macromol Theory Simul 12(9):679–689

    Article  CAS  Google Scholar 

  20. Zhou Z, Jia Z, Yan DY (2009) Theoretical investigation on the polyaddition of A2 and CB2 monomers with non-equal reactivity. Polymer 50:5608–5612

    Article  CAS  Google Scholar 

  21. Cheng KC, Chuang TH, Tsai TH, Guo WJ, Su WF (2008) Model of hyperbranched polymers formed by monomers A2 and Bg with end-capping molecules. Eur Polym J 44:2998–3004

    Article  CAS  Google Scholar 

  22. Gupta S, Pandey MK, Levon K, Haag R, Watterson AC, Parmar VS, Sharma SK (2010) Biocatalytic approach for the synthesis of glycerol-based macroamphiphiles and their self-assembly to micellar nanotransporters. Macromol Chem Phys 211:239–244

    Article  CAS  Google Scholar 

  23. Pignatello R, Panto V, Basile L, Impallomeni G, Ballistreri A, Pistara V, Craparo EF, Puglisi G (2010) New amphiphilic conjugates of mono- and bis(carboxy)-PEG2,000 polymers with lipoamino acids as surface modifiers of colloidal drugs carriers. Macromol Chem Phys 211:1148–1156

    Article  CAS  Google Scholar 

  24. Shaha A, Ramakrishnan SJ (2009) Unimolecular micelles and reverse micelles based on hyperbranched polyethers—comparative study of AB2 + A-R and A2 + B3 + A-R types strategies. Polym Sci Part A Polym Chem 47:80–91

    Article  Google Scholar 

  25. Carnahan MA, Grinstaff MW (2001) Synthesis and characterization of poly(glycerol-succinic acid) dendrimers. Macromol 34:7648–7655

    Article  CAS  Google Scholar 

  26. Luman NR, Kim T, Grinstaff MW (2004) Dendritic polymers composed of glycerol and succinic acid: synthetic methodologies and medical applications. Pure Appl Chem 76:1375–1385

    Article  CAS  Google Scholar 

  27. Meyers SR, Juhn FS, Griset AP, Luman NR, Grinstaff MW (2008) Anionic amphiphilic dendrimers as antibacterial agents. J Am Chem Soc 130:14444–14445

    Article  CAS  Google Scholar 

  28. Pasquier N, Keul H, Heine E, Moeller E, Angelov B, Linser S, Willumeit R (2008) Amphiphilic branched polymers as antimicrobial agents. Macromol Biosci 8:903–915

    Article  CAS  Google Scholar 

  29. Agach M, Delbaere S, Marinkovic S, Estrine B, Nardello-Rataj V (2012) Characterization, stability and ecotoxic properties of readily biodegradable branched oligoesters based on bio-sourced succinic acid and glycerol. Polym Degrad Stabil 97(10):1956–1963

    Article  CAS  Google Scholar 

  30. Agach M, Delbaere S, Marinkovic S, Estrine B, Nardello-Rataj V (2013) Synthesis, characterization, biodegradability and surfactants properties of bio-sourced lauroyl poly(glycerol-succinate). Colloids Surf A Physicochem Eng Asp 419:263–273

    Article  CAS  Google Scholar 

  31. Khongphow C, Theerakul J, Puttamat S, Singkhonrat J (2015) Characterisation of poly(glycerol-succinate) oligomers as biobased non-ionic surfactants by nuclear magnetic resonance and mass spectrometry. Colloids Surf A Physicochem Eng Asp 468:301–308

    Article  CAS  Google Scholar 

  32. Rosen MJ (2004) Surfactants and interfacial phenomena, 3rd edn. Wiley, Hoboken, New Jersey

  33. Nishioka GM, Ross S, Whitworth M (1983) The stability of foam: comparison of experimental data and computed results. J Colloid Interf Sci 95:435–442

    Article  CAS  Google Scholar 

  34. Ronteltap AD, Prins A (1990) The role of surface viscosity in gas diffusion in aqueous foams. II. Experimental. Colloid Surf 47:285–298

    Article  CAS  Google Scholar 

  35. Ronteltap AD, Damsté BR, De Gee M, Prins A (1990) The role of surface viscosity in gas diffusion in aqueous foams. I. Theoretical. Colloid Surf 47:269–283

    Article  CAS  Google Scholar 

  36. Bergeron V (1999) Measurement of forces and structure between fluid interfaces. Curr Opin Colloid In 4:249–255

    Article  CAS  Google Scholar 

  37. Ho Tan Taï L (2000) Formulating detergents and personal care products: a guide to product development, American Oils Chemits Society

  38. Ho Tan Taï L (1999) Détergents et produits de soins corporels, Technique et ingénierie. Dunod, pp 118–125. ISBN-10: 2100042068, ISBN-13: 978-2100042067

  39. Koenraad P, Braber (2001) A Use of nonanoic acid as an antimicrobial agent, in particular an antifungal agent, WIPO Pat. WO/2001/032020

  40. Pohl H, Kock JLF, Thibane VS (2011) Antifungal free fatty acids: a review. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Microbiology series, no 3, vol 1, pp 61–71

  41. Desbois AP, Smith VJ (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85:1629–1642

    Article  CAS  Google Scholar 

  42. Berg JM, Tymoczko JL, Styer L (2002) Biochemistry, 5th edn. Freemen W H, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinisa Marinkovic.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (DOC 1971 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agach, M., Marinkovic, S., Estrine, B. et al. Acyl Poly(Glycerol-Succinic Acid) Oligoesters: Synthesis, Physicochemical and Functional Properties, and Biodegradability. J Surfact Deterg 19, 933–941 (2016). https://doi.org/10.1007/s11743-016-1853-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-016-1853-4

Keywords

Navigation