Skip to main content
Log in

Effect of 24-epibrassinolide on growth, protein content and antioxidative defense system of Brassica juncea L. subjected to cobalt ion toxicity

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Brassica juncea L. plants were subjected to cobalt (Co) ion (0, 5 × 10−4, 10−3, 1.5 × 10−3 and 2 × 10−3 M) toxicity and were sprayed with different concentrations of 24-epibrassinolide (24-EBL) (0, 10−10, 10−8 and 10−6 M) at 15-day stage after sowing. They were sampled at 30 and 60 days after sowing and analyzed for growth parameters in terms of shoot length and number of leaves. Thereafter, leaves were excised and content of proteins and the activities of antioxidative enzymes (superoxide dismutase (SOD) (EC 1.15.1.1) catalase (CAT) (EC 1.11.1.6), ascorbate peroxidase (APOX) (EC 1.11.1.11), guaiacol peroxidase (POD) (EC 1.11.1.7) glutathione reductase (GR) (EC 1.6.4.2), monodehydroascorbate reductase (MDHAR) (EC 1.1.5.4) and dehydroascorbate reductase (DHAR) (EC 1.8.5.1)) were analyzed. The plants exposed to cobalt ion exhibited a significant decline in growth in terms of shoot length and number of leaves. However, foliar spray treatment with 24-EBL was able to alleviate the stress generated by cobalt ion and significantly improved the above parameters. The activities of antioxidative enzymes (SOD, CAT, POD, GR, APOX, MDHAR and DHAR) and protein content were also regulated considerably in leaves of plants treated with 24-EBL alone, 10−8 M concentration being the most effective. The activities of antioxidative enzymes also increased in leaves of B. juncea plants by the application of cobalt ion to soil and consequently sprayed with 24-EBL. Similarly, the protein content was also regulated in leaves of B. juncea plants treated with 24-EBL as compared to untreated control plants, thereby revealing stress-protective properties of 24-EBL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

24-EBL:

24-Epibrassinolide

28-HBL:

28-Homobrassinolide

ANOVA:

Analysis of variance

APOX:

Ascorbate peroxidase

CAT:

Catalase

Co:

Cobalt

Cont.:

Control

DAS:

Days after sowing

DHAR:

Dehydroascorbate reductase

FW:

Fresh weight

GR:

Glutathione reductase

MDHAR:

Monodehydroascorbate reductase

POD:

Guaiacol peroxidase

ROS:

Reactive oxygen species

SA:

Specific activity

SOD:

Superoxide dismutase

UA:

Unit activity

References

  • Aebi H (1974) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinhan, pp 673–684

    Google Scholar 

  • Agarwal S, Shaheen R (2007) Stimulation of antioxidant system and lipid peroxidation by abiotic stresses in leaves of Momordica charantia. Braz J Plant Physiol 19(2):149–161

    Article  CAS  Google Scholar 

  • Ali B, Hayat S, Ahmad A (2007) 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum). Environ Exp Bot 59:217–223

    Article  CAS  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82:1227–1238

    CAS  Google Scholar 

  • Arora P, Bhardwaj R, Kanwar MK (2010a) Presoaking seed treatment of 24-epiBL modulates Cr stress in Brassica juncea L. plants. Terr Aquatic Environ Toxicol 5:14–18

    Google Scholar 

  • Arora P, Bhardwaj R, Kanwar MK (2010b) Seed presoaking treatment of 28-homobrassinolide modulates antioxidative defense system of Brassica Juncea L. under zinc metal stress. Seed Sci Biotech 4(1):23–27

    Google Scholar 

  • Arora P, Bhardwaj R, Kanwar MK (2010c) 24-Epibrassinolide regulated antioxidative defense system of Brassica juncea L. under Zn metal stress. Physiol Mol Biol Plants 16(3):285–293

    Article  CAS  Google Scholar 

  • Ashraf M, Akram NA, Arteca RN, Foolad MR (2010) The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit Rev Plant Sci 29(3):162–190

    Article  CAS  Google Scholar 

  • Bajguz (2000) Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. Plant Physiol Biochem 38(3):209–215

    Article  CAS  Google Scholar 

  • Bajguz A, Tretyn A (2003) The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62:1027–1046

    Article  PubMed  CAS  Google Scholar 

  • Bakkaus E, Gouget B, Gallien JP, Khodja H, Carrot F, Morel JL, Collins R (2005) Concentration and distribution of cobalt in higher plants: the use of micro-PIXE spectroscopy. Nucl Instr Meth Phys Res B 231:350–356

    Article  CAS  Google Scholar 

  • Baryla A, Laborde C, Montillet JL, Triantaphylides C, Chagvardieff P (2000) Evaluation of lipid peroxidation as a toxicity bioassay for plants exposed to copper. Environ Pollut 109:131–135

    Article  PubMed  CAS  Google Scholar 

  • Carlberg I, Mannervik B (1975) Purification of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250:5475–5480

    PubMed  CAS  Google Scholar 

  • Choudhary SP, Bhardwaj R, Gupta BD, Dutt P, Kanwar M, Arora P (2009a) Epibrassinolide regulated synthesis of polyamines and auxins in Raphanus sativus L. seedlings under Cu metal stress. Braz J Plant Physiol 21(1):25–32

    Article  Google Scholar 

  • Choudhary SP, Bhardwaj R, Gupta BD, Dutt P, Arora P (2009b) Effect of 24-epibrassinolide on polyamines titers, antioxidative enzymes and seedling growth of Raphnus sativus L. under copper stress. Plant stress 3(1):7–12

    Google Scholar 

  • Collins RN, Bakkaus E, Carriere M, Khodja H, Proux O, Morel J-L, Gouget B (2010) Uptake, localization, and speciation of cobalt in Triticum aestivum L. (Wheat) and Lycopersicon esculentum M. (Tomato). Environ Sci Technol 44(8):2904–2910

    Article  PubMed  CAS  Google Scholar 

  • Dalton DA, Russell SA, Hanus FJ, Pascoe GA, Evans HJ (1986) Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proc Natl Acad Sci USA (PNAS) 83:3811–3815

    Article  CAS  Google Scholar 

  • Deng Z, Zhang X, Tang W, Oses-Prieto JA, Suzuki N, Gendron JM, Chen H, Guan S, Chalkley RJ, Peterman TK, Burlingame AL, Wang ZY (2007) A proteomics study of brassinosteroid response in Arabidopsis. Mol Cell Proteomics 6(12):2058–2071

    Article  PubMed  CAS  Google Scholar 

  • Fariduddin Q, Hasan SA, Ali B, Hayat S, Ahmad A (2008) Effect of modes of application of 28-homobrassinolide on mung bean. Turk J Biol 32:17–21

    CAS  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione associated mechanisms of acclamatory stress tolerance and signaling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD, Steffens GL, Flippen-Anderson JL, Cook JC (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanism for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    Article  PubMed  CAS  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Clarendon Press, Oxford

    Google Scholar 

  • Hasan SA, Hayat S, Ali B, Ahmad A (2008) 28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidant. Environ Poll 151:60–66

    Article  CAS  Google Scholar 

  • Haubrick LL, Assmann SM (2006) Brassinosteroids and plant function: some clues, more puzzles. Plant Cell Environ 29:446–457

    Article  PubMed  CAS  Google Scholar 

  • Hayat S, Ali B, Hassan SA, Ahmad A (2007) Brassinosteroids enhanced antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60(1):33–41

    Article  CAS  Google Scholar 

  • Hayat S, Ali B, Hassan SA, Hayat Q, Ahmad A (2009) Brassinosteroids protect Lycopersicon esculentum from cadmium toxicity applied as shotgun approach. Protoplasma 239(1–4):3–14

    PubMed  Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395

    CAS  Google Scholar 

  • Kasprzak KS (2002) Oxidative DNA and protein damage in metal-induced toxicity and carcinogenesis. Free Rad Biol Med 32:958–967

    Article  PubMed  CAS  Google Scholar 

  • Khripach VA, Zhabinskii VN, de-Groot AE (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 86:441–447

    Article  CAS  Google Scholar 

  • Kobayashi M, Shimizu S (1999) Cobalt proteins. Eur J Biochem 261(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Kono Y (1978) Generation of superoxide radical during autooxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Resbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mittler RS, Vanderauwera M, Gollery F, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880

    CAS  Google Scholar 

  • Nemhauser JL, Chory J (2004) BRing it on: new insights into the mechanism of brassinosteroid action. J Exp Bot 55:265–270

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • NRC (1999) Metals and radionuclides: technologies for characterization, remediation, and containment. In: Groundwater and soil cleanup: improving management of persistent contaminants, National Academy Press, Washington DC, pp 72–128

  • Nunez M, Mazzafera P, Mazorra LM, Siqueira WJ, Zullo MAT (2003) Influence of brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biol Plant 47:67–70

    Article  CAS  Google Scholar 

  • Ogweno JO, Song XS, Shi K, Hu WH, Mao WH, Zhou YH, Yu JQ, Nogue′s S (2008) Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J Plant Growth Regul 27:49–57

    Article  CAS  Google Scholar 

  • Palit S, Sharma A, Talukder G (1994) Effect of cobalt on plants. Bot Rev 60(2):149–181

    Article  Google Scholar 

  • Pullman GS, Zhang Y, Phan BH (2003) Brassinolide improves embryogenic tissue initiation in conifers and rice. Plant Physiol 22:96–104

    CAS  Google Scholar 

  • Putter J (1974) Peroxidase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinhan, pp 685–690

    Google Scholar 

  • Teisseire H, Guy V (2000) Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor). Plant Sci 153:65–72

    Article  CAS  Google Scholar 

  • Vangronsveld JH, Clijsters (1994) Toxic effects of metals. In: Farago ME (ed) Plants and the chemical elements. Biochemistry, uptake, tolerance and toxicity. VCH Publishers, Weinheim, pp 150–177

    Google Scholar 

  • Vardhini BV, Rao SSR (2003) Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. Plant Growth Regul 41:25–31

    Article  CAS  Google Scholar 

  • Xue LW, Du JB, Yang H, Xu F, Yuan S, Lin HH (2009) Brassinosteroids counteract abscisic acid in germination and growth of Arabidopsis. Z Naturforsch C 64(3–4):225–230

    PubMed  CAS  Google Scholar 

  • Ye Q, Zhu W, Li L, Zhang S, Yin Y, Ma H, Wang X (2010) Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proc Natl Acad Sci USA (PNAS) 107(13):6100–6105

    Article  CAS  Google Scholar 

  • Zhou B, Guo Z, Liu Z (2005) Effects of abscisic acid on antioxidant systems of Stylosanthes guianensis (Aublet) Sw. under chilling stress. Crop Sci 45:599–605

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial assistance from University Grants Commission (UGC), New Delhi, India is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Bhardwaj.

Additional information

Communicated by S. Lewak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arora, P., Bhardwaj, R. & Kanwar, M.K. Effect of 24-epibrassinolide on growth, protein content and antioxidative defense system of Brassica juncea L. subjected to cobalt ion toxicity. Acta Physiol Plant 34, 2007–2017 (2012). https://doi.org/10.1007/s11738-012-1002-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-1002-2

Keywords

Navigation