Skip to main content
Log in

Biochemical characterization of the Arabidopsis KS-type dehydrin protein, whose gene expression is constitutively abundant rather than stress dependent

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Dehydrins are known as plant stress-responsive genes. Arabidopsis thaliana has 10 dehydrin genes. Among them, one of the highly expressed genes is a KS-type dehydrin (At1g54410). However, the gene product, which is a histidine-rich dehydrin whose molecular mass is 11 kDa (AtHIRD11), has not been studied. Thus, we report the biochemical characterization of the AtHIRD11 protein. Although the AtHIRD11 protein was detected in all organs of Arabidopsis, the bolting stem and the flower showed higher accumulation than the other organs, with the AtHIRD11 protein detected in the cambial zone of the stem vasculature. Most of the AtHIRD11 protein was found to be a bound form. The bound AtHIRD11 was solubilized by 1 M NaCl solution. The extracted AtHIRD11 was retained in immobilized metal-affinity chromatography, and eluted by an imidazole gradient. The native AtHIRD11 prepared from Arabidopsis was partially phosphorylated, but further phosphorylated by casein kinase 2 in vitro. Metal-binding assays indicated that Zn2+ may be the best metal for AtHIRD11 binding. These results suggest that AtHIRD11 is a metal-binding dehydrin that shows a house-keeping expression in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AtHIRD11:

Arabidopsisthaliana histidine-rich dehydrin whose molecular mass is 11 kDa

CK2:

Casein kinase 2

2D-PAGE:

Two-dimensional polyacrylamide gel electrophoresis

EDTA:

Ethylenediaminetetraacetic acid

EST:

Expressed sequence tag

IMAC:

Immobilized metal affinity chromatography

PCR:

Polymerase chain reaction

RT-PCR:

Reverse transcription-polymerase chain reaction

SAP:

Shrimp alkaline phosphatase

SDS:

Sodium dodecyl sulfate

SDS-PAGE:

SDS-polyacrylamide gel electrophoresis

References

  • Abu-Abied M, Golomb L, Belausov E, Huang S, Geiger B, Kam Z, Staiger CJ, Sadot E (2006) Identification of plant cytoskeleton-interacting proteins by screening for actin stress fiber association in mammalian fibroblasts. Plant J 48:367–379

    Article  PubMed  CAS  Google Scholar 

  • Alsheikh MK, Heyen BJ, Randall SK (2003) Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J Biol Chem 278:40882–40889

    Article  PubMed  CAS  Google Scholar 

  • Alsheikh MK, Svensson JT, Randall SK (2005) Phosphorylation regulated ion-binding is a property shared by the acidic subclass dehydrins. Plant Cell Environ 28:1114–1122

    Article  CAS  Google Scholar 

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  PubMed  CAS  Google Scholar 

  • Bravo LA, Close TJ, Corcuera LJ, Guy CL (1999) Characterization of an 80-kDa dehydrin-like protein in barley responsive to cold acclimation. Physiol Plant 106:177–183

    Article  CAS  Google Scholar 

  • Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pagès M, Masmoudi K (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–2026

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, Targolli J, Huang X, Wu R (2002) Wheat LEA genes, PMA80 and PMA1959 enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol Breed 10:71–82

    Article  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10:623–638

    Article  PubMed  CAS  Google Scholar 

  • Figueras M, Pujal J, Saleh A, Save R, Pagès M, Goday A (2004) Maize Rabl7 overexpression in Arabidopsis plants promotes osmotic stress tolerance. Ann Appl Biol 144:251–257

    Article  CAS  Google Scholar 

  • Godoy JA, Lunar R, Torres-Schumann S, Moreno J, Rodrigo RM, Pintor-Toro JA (1994) Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants. Plant Mol Biol 26:1921–1934

    Article  PubMed  CAS  Google Scholar 

  • Hara M (2010) The multifunctionality of dehydrins: an overview. Plant Signal Behav 5:503–508

    CAS  Google Scholar 

  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298

    PubMed  CAS  Google Scholar 

  • Hara M, Fujinaga M, Kuboi T (2005) Metal binding by citrus dehydrin with histidine-rich domains. J Exp Bot 56:2695–2703

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Shinoda Y, Tanaka Y, Kuboi T (2009) DNA binding of citrus dehydrin promoted by zinc ion. Plant Cell Environ 32:532–541

    Article  PubMed  CAS  Google Scholar 

  • Heyen BJ, Alsheikh MK, Smith EA, Torvik CF, Seals DF, Randall SK (2002) The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol 130:675–687

    Article  PubMed  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Houde M, Dallaire S, N’Dong D, Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2:381–387

    Article  PubMed  CAS  Google Scholar 

  • Hundertmark M, Hincha DK (2008) LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118

    Article  PubMed  Google Scholar 

  • Ismail AM, Hall AE, Close TJ (1999) Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proc Natl Acad Sci USA 96:13566–13570

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Wang Y (2004) β-Elimination coupled with tandem mass spectrometry for the identification of in vivo and in vitro phosphorylation sites in maize dehydrin DHN1 protein. Biochemistry 43:15567–15576

    Article  PubMed  CAS  Google Scholar 

  • Koag MC, Wilkens S, Fenton RD, Resnik J, Vo E, Close TJ (2009) The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiol 150:1503–1514

    Article  PubMed  CAS  Google Scholar 

  • Kovacs D, Kalmar E, Torok Z, Tompa P (2008) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390

    Article  PubMed  CAS  Google Scholar 

  • Krüger C, Berkowitz O, Stephan UW, Hell R (2002) A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J Biol Chem 277:25062–25069

    Article  PubMed  Google Scholar 

  • Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–279

    Article  PubMed  CAS  Google Scholar 

  • Plana M, Itarte E, Eritja R, Goday A, Pages M, Martinez MC (1991) Phosphorylation of the maize RAB-17 protein by casein kinase 2. J Biol Chem 266:22510–22514

    PubMed  CAS  Google Scholar 

  • Puhakainen T, Hess MW, Mäkelä P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753

    Article  PubMed  CAS  Google Scholar 

  • Reyes JL, Campos F, Wei H, Arora R, Yang Y, Karlson DT, Covarrubias AA (2008) Functional dissection of hydrophilins during in vitro freeze protection. Plant Cell Environ 31:1781–1790

    Article  PubMed  CAS  Google Scholar 

  • Röhrig H, Schmidt J, Colby T, Bräutigam A, Hufnagel P, Böhm N, Bartels D (2006) Desiccation of the resurrection plant Craterostigma plantagineum induces dynamic changes in protein phosphorylation. Plant Cell Environ 29:1606–1615

    Article  PubMed  Google Scholar 

  • Rorat T (2006) Plant dehydrins: tissue location, structure and function. Cell Mol Biol Lett 11:536–556

    Article  PubMed  CAS  Google Scholar 

  • Rorat T, Grygorowicz WJ, Irzykowski W, Rey P (2004) Expression of KS-type dehydrins is primarily regulated by factors related to organ type and leaf developmental stage during vegetative growth. Planta 218:878–885

    Article  PubMed  CAS  Google Scholar 

  • Skirycz A, Inzé D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21:197–203

    Article  PubMed  CAS  Google Scholar 

  • Svensson J, Palva ET, Welin B (2000) Purification of recombinant Arabidopsis thaliana dehydrins by metal ion affinity chromatography. Protein Expr Purif 20:169–178

    Article  PubMed  CAS  Google Scholar 

  • Svensson J, Ismail AM, Palva ET, Close TJ (2002) Dehydrins. In: Storey KB, Storey JM (eds) Sensing. Signaling and cell adaptation, Elsevier, pp 155–171

    Google Scholar 

  • Tompa P (2009) Structure and function of intrinsically disordered proteins. CRC Press, FL

    Book  Google Scholar 

  • Tompa P, Bánki P, Bokor M, Kamasa P, Kovács D, Lasanda G, Tompa K (2006) Protein-water and protein-buffer interactions in the aqueous solution of an intrinsically unstructured plant dehydrin: NMR intensity and DSC aspects. Biophys J 91:2243–2249

    Article  PubMed  CAS  Google Scholar 

  • Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812

    Article  PubMed  CAS  Google Scholar 

  • Ueda EKM, Gout PW, Morganti L (2003) Current and prospective applications of metal ion-protein binding. J Chromatogr A 988:1–23

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski M, Webb R, Balsamo R, Close TJ, Yu XM, Griffith M (1999) Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica). Physiol Plant 105:600–608

    Article  CAS  Google Scholar 

  • Yin Z, Rorat T, Szabala BM, Ziólkowska A, Malepszy S (2006) Expression of a Solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings. Plant Sci 170:1164–1172

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan (19380182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Hara.

Additional information

Communicated by J. Jorrin-Novo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figures (PDF 76 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hara, M., Shinoda, Y., Kubo, M. et al. Biochemical characterization of the Arabidopsis KS-type dehydrin protein, whose gene expression is constitutively abundant rather than stress dependent. Acta Physiol Plant 33, 2103–2116 (2011). https://doi.org/10.1007/s11738-011-0749-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-011-0749-1

Keywords

Navigation