Skip to main content
Log in

A review of Pt-based electrocatalysts for oxygen reduction reaction

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Development of active and durable electrocatalyst for oxygen reduction reaction (ORR) remains one challenge for the polymer electrolyte membrane fuel cell (PEMFC) technology. Pt-based nanomaterials show the greatest promise as electrocatalyst for this reaction among all current catalytic structures. This review focuses on Pt-based ORR catalyst material development and covers the past achievements, current research status and perspectives in this research field. In particular, several important categories of Pt-based catalytic structures and the research advances are summarized. Key factors affecting the catalyst activity and durability are discussed. An outlook of future research direction of ORR catalyst research is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Narayanan R, El-Sayed M A. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Letters, 2004, 4(7): 1343–1348

    Article  Google Scholar 

  2. Pyayt A L, Wiley B, Xia Y, Chen A, Dalton L. Integration of photonic and silver nanowire plasmonic waveguides. Nature Nanotechnology, 2008, 3(11): 660–665

    Article  Google Scholar 

  3. Stewart M E, Anderton C R, Thompson L B, Maria J, Gray S K, Rogers J A, Nuzzo R G. Nanostructured plasmonic sensors. Chemical Reviews, 2008, 108(2): 494–521

    Article  Google Scholar 

  4. Tao A R, Habas S, Yang P. Shape control of colloidal metal nanocrystals. Small, 2008, 4(3): 310–325

    Article  Google Scholar 

  5. Chng L L, Erathodiyil N, Ying J Y. Nanostructured catalysts for organic transformations. Accounts of Chemical Research, 2013, 46(8): 1825–1837

    Article  Google Scholar 

  6. Linic S, Christopher P, Xin H, Marimuthu A. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties. Accounts of Chemical Research, 2013, 46(8): 1890–1899

    Article  Google Scholar 

  7. Lu J, Elam J W, Stair P C. Synthesis and stabilization of supported metal catalysts by atomic layer deposition. Accounts of Chemical Research, 2013, 46(8): 1806–1815

    Article  Google Scholar 

  8. Wu J, Yang H. Platinum-based oxygen reduction electrocatalysts. Accounts of Chemical Research, 2013, 46(8): 1848–1857

    Article  Google Scholar 

  9. Zhang H, Jin M, Xiong Y, Lim B, Xia Y. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Accounts of Chemical Research, 2013, 46(8): 1783–1794

    Article  Google Scholar 

  10. Cuenya B R. Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films, 2010, 518(12): 3127–3150

    Article  Google Scholar 

  11. Guo S, Wang E. Noble metal nanomaterials: controllable synthesis and application in fuel cells and analytical sensors. Nano Today, 2011, 6(3): 240–264

    Article  Google Scholar 

  12. Gu J, Zhang Y W, Tao F. Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chemical Society Reviews, 2012, 41(24): 8050–8065

    Article  Google Scholar 

  13. Zhang L, Niu G, Lu N, Wang J, Tong L, Wang L, Kim M J, Xia Y. Continuous and scalable production of well-controlled noble-metal nanocrystals in milliliter-sized droplet reactors. Nano Letters, 2014, 14(11): 6626–6631

    Article  Google Scholar 

  14. Chi M, Wang C, Lei Y, Wang G, Li D, More K L, Lupini A, Allard L F, Markovic N M, Stamenkovic V R. Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing. Nature Communication, 2015, 6: 1–9

    Article  Google Scholar 

  15. Elmer T, Worall M, Wu S, Riffat S B. Fuel cell technology for domestic built environment applications: state-of-the-art review. Renewable & Sustainable Energy Reviews, 2015, 42: 913–931

    Article  Google Scholar 

  16. Wang X, Zhang H, Lin H, Gupta S, Wang C, Tao Z, Fu H, Wang T, Zheng J, Wu G, Li X. Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-NC catalysts for oxygen reduction in acid. Nano Energy, 2016, 25: 110–119

    Article  Google Scholar 

  17. Tian X, Luo J, Nan H, Zou H, Chen R, Shu T, Li X, Li Y, Song H, Liao S, Adzic R R. Transition metal nitride coated with atomic layers of pt as a low-cost, highly stable electrocatalyst for the oxygen reduction reaction. Journal of the American Chemical Society, 2016, 138(5): 1575–1583

    Article  Google Scholar 

  18. Wang Y J, Zhao N, Fang B, Li H, Bi X T, Wang H. Carbonsupported pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chemical Reviews, 2015, 115(9): 3433–3467

    Article  Google Scholar 

  19. Niu G, Ruditskiy A, Vara M, Xia Y. Toward continuous and scalable production of colloidal nanocrystals by switching from batch to droplet reactors. Chemical Society Reviews, 2015, 44(16): 5806–5820

    Article  Google Scholar 

  20. Chung D Y, Jun S W, Yoon G, Kwon S G, Shin D Y, Seo P, Yoo J M, Shin H, Chung Y H, Kim H, Mun B S, Lee K S, Lee N S, Yoo S J, Lim D H, Kang K, Sung Y E, Hyeon T. Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. Journal of the American Chemical Society, 2015, 137(49): 15478–15485

    Article  Google Scholar 

  21. Lototskyy M V, Davids M W, Tolj I, Klochko Y V, Sekhar B S, Chidziva S, Smith F, Swanepoel D, Pollet B G. Metal hydride systems for hydrogen storage and supply for stationary and automotive low temperature PEM fuel cell power modules. International Journal of Hydrogen Energy, 2015, 40(35): 11491–11497

    Article  Google Scholar 

  22. Alaswad A, Baroutaji A, Olabi A. Application of fuel cell technologies in the transport sector: current challenges and developments. State of the Art on Energy Developments, 2015, 11: 251

    Google Scholar 

  23. Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 2012, 486(7401): 43–51

    Article  Google Scholar 

  24. Jiao L, Zhang L, Wang X, Diankov G, Dai H. Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458(7240): 877–880

    Article  Google Scholar 

  25. Maiyalagan T, Jarvis K A, Therese S, Ferreira P J, Manthiram A. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nature Communications, 2014, 5: 1–8

    Article  Google Scholar 

  26. Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316(5825): 732–735

    Article  Google Scholar 

  27. Zhao Z, Xia Z. Design principles for dual-element-doped carbon nanomaterials as efficient bifunctional catalysts for oxygen reduction and evolution reactions. ACS Catalysis, 2016, 6(3): 1553–1558

    Article  Google Scholar 

  28. ENERGY. GOV Office of Energy Efficiency & Renewable Energy. The U.S. Department of Energy (DOE) Technical Plan—Fuel cell technologies office multi-year research, development and demonstration plan. https://energy.gov/eere/fuelcells/downloads/fuel-celltechnologies-office-multi-year-research-development-and-22, 2017–02

    Google Scholar 

  29. Stamenkovic V R, Fowler B, Mun B S, Wang G, Ross P N, Lucas C A, Marković N M. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. Science, 2007, 315(5811): 493–497

    Article  Google Scholar 

  30. Greeley J, Stephens I, Bondarenko A, Johansson T P, Hansen H A, Jaramillo T, Rossmeisl J, Chorkendorff I, Nørskov J K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chemistry, 2009, 1(7): 552–556

    Article  Google Scholar 

  31. Stamenkovic V R, Mun B S, Arenz M, Mayrhofer K J J, Lucas C A, Wang G, Ross P N, Markovic N M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature Materials, 2007, 6(3): 241–247

    Article  Google Scholar 

  32. Sun S, Murray C B, Weller D, Folks L, Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 2000, 287(5460): 1989–1992

    Article  Google Scholar 

  33. Cui C, Gan L, Heggen M, Rudi S, Strasser P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nature Materials, 2013, 12(8): 765–771

    Article  Google Scholar 

  34. Zhang C, Hwang S Y, Trout A, Peng Z. Solid-state chemistryenabled scalable production of octahedral Pt–Ni alloy electrocatalyst for oxygen reduction reaction. Journal of the American Chemical Society, 2014, 136(22): 7805–7808

    Article  Google Scholar 

  35. Choi S I, Lee S U, Kim WY, Choi R, Hong K, Nam K M, Han S W, Park J T. Composition-controlled PtCo alloy nanocubes with tuned electrocatalytic activity for oxygen reduction. ACS Applied Materials & Interfaces, 2012, 4(11): 6228–6234

    Article  Google Scholar 

  36. Oezaslan M, Hasché F, Strasser P. PtCu3, PtCu and Pt3Cu alloy nanoparticle electrocatalysts for oxygen reduction reaction in alkaline and acidic media. Journal of the Electrochemical Society, 2012, 159(4): B444–B454

    Article  Google Scholar 

  37. Jeon M K, Zhang Y, McGinn P J. A comparative study of PtCo, PtCr, and PtCoCr catalysts for oxygen electro-reduction reaction. Electrochimica Acta, 2010, 55(19): 5318–5325

    Article  Google Scholar 

  38. Koffi R C, Coutanceau C, Garnier E, Léger J M, Lamy C. Synthesis, characterization and electrocatalytic behaviour of non-alloyed PtCr methanol tolerant nanoelectrocatalysts for the oxygen reduction reaction (ORR). Electrochimica Acta, 2005, 50(20): 4117–4127

    Article  Google Scholar 

  39. Kang Y, Murray C B. Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes). Journal of the American Chemical Society, 2010, 132(22): 7568–7569

    Article  Google Scholar 

  40. Dai Y, Ou L, Liang W, Yang F, Liu Y, Chen S. Efficient and superiorly durable Pt-Lean electrocatalysts of Pt-W alloys for the oxygen reduction reaction. Journal of Physical Chemistry C, 2011, 115(5): 2162–2168

    Article  Google Scholar 

  41. Huang X, Zhao Z, Cao L, Chen Y, Zhu E, Lin Z, Li M, Yan A, Zettl A, Wang Y M, Duan X, Mueller T, Huang Y. High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science, 2015, 348(6240): 1230–1234

    Article  Google Scholar 

  42. Wang C, Li D, Chi M, Pearson J, Rankin R B, Greeley J, Duan Z, Wang G, van der Vliet D, More K L, Markovic N M, Stamenkovic V R. Rational development of ternary alloy electrocatalysts. Journal of Physical Chemistry Letters, 2012, 3(12): 1668–1673

    Article  Google Scholar 

  43. Zhang C, Sandorf W, Peng Z. Octahedral Pt2CuNi uniform alloy nanoparticle catalyst with high activity and promising stability for oxygen reduction reaction. ACS Catalysis, 2015, 5(4): 2296–2300

    Article  Google Scholar 

  44. Escudero-Escribano M, Malacrida P, Hansen MH, Vej-Hansen U G, Velázquez-Palenzuela A, Tripkovic V, Schiøtz J, Rossmeisl J, Stephens I E, Chorkendorff I. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science, 2016, 352(6281): 73–76

    Article  Google Scholar 

  45. Shao M, Peles A, Shoemaker K. Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Letters, 2011, 11(9): 3714–3719

    Article  Google Scholar 

  46. Nesselberger M, Ashton S, Meier J C, Katsounaros I, Mayrhofer K J, Arenz M. The particle size effect on the oxygen reduction reaction activity of Pt catalysts: influence of electrolyte and relation to single crystal models. Journal of the American Chemical Society, 2011, 133(43): 17428–17433

    Article  Google Scholar 

  47. Li D, Wang C, Strmcnik D S, Tripkovic D V, Sun X, Kang Y, Chi M, Snyder J D, van der Vliet D, Tsai Y, Stamenkovic V R, Sun S, Markovic N M. Functional links between Pt single crystal morphology and nanoparticles with different size and shape: the oxygen reduction reaction case. Energy & Environmental Science, 2014, 7(12): 4061–4069

    Article  Google Scholar 

  48. Leontyev I, Belenov S, Guterman V, Haghi-Ashtiani P, Shaganov A, Dkhil B. Catalytic activity of carbon-supported Pt nanoelectrocatalysts. Why reducing the size of Pt nanoparticles is not always beneficial? Journal of Physical Chemistry C, 2011, 115(13): 5429–5434

    Article  Google Scholar 

  49. Wei G F, Liu Z P. Optimum nanoparticles for electrocatalytic oxygen reduction: the size, shape and new design. Physical Chemistry Chemical Physics, 2013, 15(42): 18555–18561

    Article  Google Scholar 

  50. Liu Y, Zhang L, Willis B G, Mustain W. Importance of particle size and distribution in achieving high-activity, high-stability oxygen reduction catalysts. ACS Catalysis, 2015, 5(3): 1560–1567

    Article  Google Scholar 

  51. Viswanathan V, Wang F Y F. Theoretical analysis of the effect of particle size and support on the kinetics of oxygen reduction reaction on platinum nanoparticles. Nanoscale, 2012, 4(16): 5110–5117

    Article  Google Scholar 

  52. Tripković V, Cerri I, Bligaard T, Rossmeisl J. The influence of particle shape and size on the activity of platinum nanoparticles for oxygen reduction reaction: a density functional theory study. Catalysis Letters, 2014, 144(3): 380–388

    Article  Google Scholar 

  53. Zhang C, Hwang S Y, Peng Z. Size-dependent oxygen reduction property of octahedral Pt-Ni nanoparticle electrocatalysts. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2014, 2(46): 19778–19787

    Article  Google Scholar 

  54. Deng Y J, Tripkovic V, Rossmeisl J, Arenz M. Oxygen reduction reaction on Pt overlayers deposited onto a gold film: ligand, strain, and ensemble effect. ACS Catalysis, 2016, 6(2): 671–676

    Article  Google Scholar 

  55. Zhao X, Chen S, Fang Z, Ding J, Sang W, Wang Y, Zhao J, Peng Z, Zeng J. Octahedral Pd@Pt1.8Ni core-shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction. Journal of the American Chemical Society, 2015, 137(8): 2804–2807

    Article  Google Scholar 

  56. Li Q, Wu L, Wu G, Su D, Lv H, Zhang S, Zhu W, Casimir A, Zhu H, Mendoza-Garcia A, Sun S. New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Letters, 2015, 15(4): 2468–2473

    Article  Google Scholar 

  57. Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin H L, Snyder J D, Li D, Herron J A, Mavrikakis M, Chi M, More K L, Li Y, Markovic N M, Somorjai G A, Yang P, Stamenkovic V R. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science, 2014, 343(6177): 1339–1343

    Article  Google Scholar 

  58. Li M, Zhao Z, Cheng T, Fortunelli A, Chen C Y, Yu R, Zhang Q, Gu L, Merinov B, Lin Z, Zhu E, Yu T, Jia Q, Guo J, Zhang L, Goddard W III, Huang Y, Duan X. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science, 2016, 354(6318): 1414–1419

    Article  Google Scholar 

  59. Ahmadi T S, Wang Z L, Green T C, Henglein A, El-Sayed M A. Shape-controlled synthesis of colloidal platinum nanoparticles. Science, 1996, 272(5270): 1924–1925

    Article  Google Scholar 

  60. Deng L, Hu W, Deng H, Xiao S, Tang J. Au–Ag bimetallic nanoparticles: surface segregation and atomic-scale structure. Journal of Physical Chemistry C, 2011, 115(23): 11355–11363

    Article  Google Scholar 

  61. Devivaraprasad R, Kar T, Chakraborty A, Singh R K, Neergat M. Reconstruction and dissolution of shape-controlled Pt nanoparticles in acidic electrolytes. Physical Chemistry Chemical Physics, 2016, 18(16): 11220–11232

    Article  Google Scholar 

  62. Gan L, Cui C, Heggen M, Dionigi F, Rudi S, Strasser P. Elementspecific anisotropic growth of shaped platinum alloy nanocrystals. Science, 2014, 346(6216): 1502–1506

    Article  Google Scholar 

  63. Gan L, Heggen M, Cui C, Strasser P. Heggen M, Cui C, Strasser P. Thermal facet healing of concave octahedral Pt–Ni nanoparticles imaged in situ at the atomic scale: implications for the rational synthesis of durable high-performance ORR electrocatalysts. ACS Catalysis, 2016, 6(2): 692–695

    Article  Google Scholar 

  64. Lee K S, El-Sayed M A. Gold and Silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. Journal of Physical Chemistry B, 2006, 110(39): 19220–19225

    Article  Google Scholar 

  65. Liao H G, Cui L, Whitelam S, Zheng H. Real-time imaging of Pt3Fe nanorod growth in solution. Science, 2012, 336(6084): 1011–1014

    Article  Google Scholar 

  66. Liao H G, Zherebetskyy D, Xin H, Czarnik C, Ercius P, Elmlund H, Pan M, Wang L W, Zheng H. Facet development during platinum nanocube growth. Science, 2014, 345(6199): 916–919

    Article  Google Scholar 

  67. Mohanty A, Garg N, Jin R. A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. Angewandte Chemie International Edition, 2010, 49(29): 4962–4966

    Article  Google Scholar 

  68. Pan Y T, Wu J, Yin X, Yang H. In situ ETEM study of composition redistribution in Pt-Ni octahedral catalysts for electrochemical reduction of oxygen. AIChE Journal, 2016, 62(2): 399–407

    Article  Google Scholar 

  69. Peng L, Ringe E, van Duyne R P, Marks L D. Segregation in bimetallic nanoparticles. Physical Chemistry Chemical Physics, 2015, 17(42): 27940–27951

    Article  Google Scholar 

  70. Qi Y, Wu J, Zhang H, Jiang Y, Jin C, Fu M, Yang H, Yang D. Facile synthesis of Rh–Pd alloy nanodendrites as highly active and durable electrocatalysts for oxygen reduction reaction. Nanoscale, 2014, 6(12): 7012–7018

    Article  Google Scholar 

  71. Choi S I, Xie S, Shao M, Odell J H, Lu N, Peng H C, Protsailo L, Guerrero S, Park J, Xia X, Wang J, Kim M J, Xia Y. Synthesis and characterization of 9 nm Pt–Ni octahedra with a record high activity of 3.3 A/mgPt for the oxygen reduction reaction. Nano Letters, 2013, 13(7): 3420–3425

    Article  Google Scholar 

  72. Wu J, Qi L, You H, Gross A, Li J, Yang H. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. Journal of the American Chemical Society, 2012, 134(29): 11880–11883

    Article  Google Scholar 

  73. Corona B, Howard M, Zhang L, Henkelman G. Computational screening of core@ shell nanoparticles for the hydrogen evolution and oxygen reduction reactions. Journal of Chemical Physics, 2016, 145(24): 244708

    Article  Google Scholar 

  74. Oezaslan M, Hasché F, Strasser P. Pt-based core–shell catalyst architectures for oxygen fuel cell electrodes. Journal of Physical Chemistry Letters, 2013, 4(19): 3273–3291

    Article  Google Scholar 

  75. Strickler A L, Jackson A, Jaramillo T F. Active and stable Ir@ Pt core–shell catalysts for electrochemical oxygen reduction. ACS Energy Letters, 2017, 2(1): 244–249

    Article  Google Scholar 

  76. Shen L L, Zhang G R, Miao S, Liu J, Xu B Q. Core-shell nanostructured Au@ NimPt2 electrocatalysts with enhanced activity and durability for oxygen reduction reaction. ACS Catalysis, 2016, 6(3): 1680–1690

    Article  Google Scholar 

  77. Strasser P. Free electrons to molecular bonds and back: closing the energetic oxygen reduction (ORR)–oxygen evolution (OER) cycle using core–shell nanoelectrocatalysts. Accounts of Chemical Research, 2016, 49(11): 2658–2668

    Article  Google Scholar 

  78. Strasser P, Kühl S. Dealloyed Pt-based core-shell oxygen reduction electrocatalysts. Nano Energy, 2016, 29: 166–177

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenmeng Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Shen, X., Pan, Y. et al. A review of Pt-based electrocatalysts for oxygen reduction reaction. Front. Energy 11, 268–285 (2017). https://doi.org/10.1007/s11708-017-0466-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-017-0466-6

Keywords

Navigation