Skip to main content
Log in

The Influence of Particle Shape and Size on the Activity of Platinum Nanoparticles for Oxygen Reduction Reaction: A Density Functional Theory Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We present first principle investigation of the influence of platinum nanoparticle shape and size on the oxygen reduction reaction activity. We compare the activities of nanoparticles with specific shapes (tetrahedron, octahedron, cube and truncated octahedron) with that of equilibrium particle shape at 0.9 V. Furthermore, the influence of support is assessed by looking at the particles with and without support interactions. The equilibrium shape is determined by calculating the changes in surface energies with potential for low-index platinum facets; (111), (100) and (110). This has been done by explicitly taking the coverage of oxygenated species into account. A kinetic model derived from counting the number of sites shows that the theoretical activity obtained for equilibrium particle fits well with experimental data. Particles with ~3 nm diameter are found to possess the highest activity.

Graphical Abstract

The influence of particle size and shape on the activity of platinum nanoparticles for oxygen reduction reaction has been assessed by means of modelling using the surface free energies of low-indexed platinum facets at 0.9 V. The input data for modelling are obtained from density functional theory calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Appl Catal B 56:9

    Article  CAS  Google Scholar 

  2. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Nat Chem 1:37

    Article  Google Scholar 

  3. Strasser P, Fan Q, Devenney M, Weinberg WH, Liu P, Nørskov JK (2003) Phys Chem B 107:11013

    Article  CAS  Google Scholar 

  4. Jacobsen CJH, Dahl S, Clausen BS, Bahn S, Logadottir A, Nørskov JK (2001) J Am Chem Soc 123:8404

    Article  CAS  Google Scholar 

  5. Toulhoat H, Raybaud P (2003) J Catal 216:63

    Article  CAS  Google Scholar 

  6. Hinnemann B, Moses PG, Bonde J, Jorgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2005) J Am Chem Soc 127:5308

    Article  CAS  Google Scholar 

  7. Linic S, Jankowiak J, Barteau MA (2004) J Catal 224:489

    Article  CAS  Google Scholar 

  8. Mavrikakis M, Greeley J (2004) Nat Mater 3:810

    Article  Google Scholar 

  9. Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Nat Mater 7:333

    Article  CAS  Google Scholar 

  10. Knudsen J, Nilekar AK, Vang RT, Schnadt J, Kunkes EL, Dumesic JA, Mavrikakis M, Besenbacher F (2007) J Am Chem Soc 129:6485

    Article  CAS  Google Scholar 

  11. Mukerjee S, Srinivasan S (1993) J Electroanal Chem 357:201

    Article  CAS  Google Scholar 

  12. Stamenkovic VR, Mun BS, Arenz M, Mayrhoffer KJJ, Lucas CA, Wang G, Ross PN, Markovic NM (2007) Nature 6:241

    Article  CAS  Google Scholar 

  13. Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang JX, Nilekar AU, Mavrikakis M, Valerio JA, Uribe F (2007) Top Catal 46:276

    Article  Google Scholar 

  14. Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Nørskov JK (2009) Nat Chem 1:552

    Article  CAS  Google Scholar 

  15. Koh S, Strasser P (2007) J Am Chem Soc 129:12624

    Article  CAS  Google Scholar 

  16. Stephens IEL, Bondarenko AS, Grønbjerg U, Rossmeisl J, Chorkendorff I (2012) Energy Environ Sci 5:6744

    Article  CAS  Google Scholar 

  17. Markovic N, Gasteiger H, Ross PN (1997) J Electrochem Soc 144:1591

    Article  CAS  Google Scholar 

  18. Lee SW, Chen S, Suntivich J, Sasaki K, Adzic RR, Shao-Horn Y (2010) J Phys Chem Lett 1:1316

    Article  CAS  Google Scholar 

  19. Perez-Alonso FJ, McCarthy DN, Nierhoff A, Hernandez-Fernandez P, Strebel C, Stephens IEL, Nielsen JH, Chorkendorff I (2012) Angew Chem Int Ed 51:1

    Article  Google Scholar 

  20. Macia MD, Campina JM, Herrero E, Feliu JM (2004) J Electroanal Chem 564:141

    Article  CAS  Google Scholar 

  21. Kuzume A, Herrero E, Feliu JM (2007) J Electroanal Chem 599:333

    Article  CAS  Google Scholar 

  22. Kinoshita K (1990) J Electrochem Soc 137:845

    Article  CAS  Google Scholar 

  23. Van Hardeveld R, Hartog F (1969) Surf Sci 15:189

    Article  Google Scholar 

  24. Van Hardeveld R, Van Montfoort R (1966) Surf Sci 4:396

    Article  Google Scholar 

  25. Mayrhofer KJJ, Blizanac BB, Arenz M, Stamenkovic VR, Ross PN, Markovic NM (2005) J Phys Chem B 109:14433

    Article  CAS  Google Scholar 

  26. Arenz M, Mayrhofer KJJ, Stamenkovic V, Blizanac BB, Tomoyuki T, Ross PN, Markovic NM (2005) J Am Chem Soc 127:6819

    Article  CAS  Google Scholar 

  27. Shao M, Peles A, Shoemaker K (2011) NanoLett 11:3714

    Article  CAS  Google Scholar 

  28. Leontyev IN, Belenov SV, Guterman VE, Haghi-Ashtiani P, Shaganov AP, Dkhil B (2011) J Phys Chem C 115:5429

    Article  CAS  Google Scholar 

  29. Hayden BE (2013) Acc Chem Res 3:1858

    Article  Google Scholar 

  30. Guerin S, Hayden BE, Lee CE, Mormiche C, Owen JR, Russell AE (2004) J Comb Chem 6:149

    Article  CAS  Google Scholar 

  31. Antoine O, Bultel Y, Durand R (2001) J Electroanal Chem 499:85

    Article  CAS  Google Scholar 

  32. Mayrhofer KJJ, Strmcnik D, Blizanac BB, Stamenkovic V, Arenz M, Markovic NM (2008) Electrochim Acta 53:3181

    Article  CAS  Google Scholar 

  33. Sheng W, Chen S, Vescovo E, Shao-Horn Y (2012) J Eletrochem Soc 159:B96

    Article  CAS  Google Scholar 

  34. Yano H, Inukai J, Uchida H, Watanabe M, Babu PK, Kobayashi T, Chung JH, Oldfield E, Wieckowski A (2012) Phys Chem Chem Phys 8:4932

    Article  Google Scholar 

  35. Watanabe M, Sei H, Stonehart P (1989) J Electroanal Chem 261:375

    Article  CAS  Google Scholar 

  36. Yamamoto K, Imaoka T, Chun W-J, Enoki O, Katoh H, Takenaga M, Sonoi A (2009) Nat Chem 1:397

    Article  CAS  Google Scholar 

  37. Nesselberger M, Ashton S, Meier JC, Katsounaros I, Mayrhofer KJJ, Arenz M (2011) J Am Chem Soc 133:17428

    Article  CAS  Google Scholar 

  38. Nesselberger M, Roefzaad M, Hamou RF, Biedermann PU, Schweinberger FF, Kunz S, Schloegl K, Wiberg GKH, Ashton S, Heiz U, Mayrhofer KJJ, Arenz M (2013) Nature Mater 12:919

    Article  CAS  Google Scholar 

  39. Greeley J, Rossmeisl J, Hellman A, Nørskov JK (2007) Z Phys Chem 221:1209

    Article  CAS  Google Scholar 

  40. Tritsaris GA, Greeley J, Rossmeisl J, Nørskov JK (2011) Catal Lett 141:909

    Article  CAS  Google Scholar 

  41. Wang JX, Inada H, Wu L, Zhu Y, Choi Y, Liu P, Zhou W-P, Adzic RR (2009) J Am Chem Soc 131:17298

    Article  CAS  Google Scholar 

  42. Mei D, Du J, Neurock M (2010) Ind Eng Chem Res 49:10364

    Article  CAS  Google Scholar 

  43. Favry E, Wang D, Fantauzzi D, Anton J, Su DS, Jacob T, Alonso-Vante N (2011) Phys Chem Chem Phys 13:9201

    Article  CAS  Google Scholar 

  44. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang G, Ross PN, Markovic NM (2007) Nat Mater 6:241

    Article  CAS  Google Scholar 

  45. Viswanathan W, Wang FY (2012) Nanoscale 4:5110

    Article  CAS  Google Scholar 

  46. Wang G, Van Hove MA, Ross PN, Baskes MI (2005) Prog. Surf Sci 79:28

    CAS  Google Scholar 

  47. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) J Phys Chem B 108:17886

    Article  Google Scholar 

  48. Cui CH, Gan L, Li HH, Yu SH, Heggen M, Strasser P (2012) Nano Lett 12:5885

    Article  CAS  Google Scholar 

  49. Carpenter MK, Moylan TE, Kukreja RS, Atwan MH, Tessema MM (2012) J Am Chem Soc 134:8535

    Article  CAS  Google Scholar 

  50. Antolini E, Perez JJ (2011) Mater Sci 46:4435

    Article  CAS  Google Scholar 

  51. Zhang J, Yang H, Fang J, Zou S (2010) Nano Lett 10:638

    Article  CAS  Google Scholar 

  52. Chen J, Lim B, Lee EP, Xia Y (2009) Nano Today 4:81

    Article  Google Scholar 

  53. Inaba M, Ando M, Hatanaka A, Nomoto A, Matsuzawa K, Tasaka A, Kinumoto T, Iriyama Y, Ogumi Z (2006) Electrochim Acta 52:1632

    Article  CAS  Google Scholar 

  54. Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413

    Article  Google Scholar 

  55. Vanderbilt D (1990) Phys Rev B 41:7892

    Article  Google Scholar 

  56. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  57. Dacapo pseudopotential code (https.//wiki.fysik.dtu.dk/dacapo)

  58. Atomic simulation environment (https/wiki.fysik.dtu.dk/ase)

  59. Tripković V, Skúlason E, Siahrostami S, Nørskov JK, Rossmeisl J (2010) Electrochim Acta 55:7975

    Article  Google Scholar 

  60. Hansen HA, Rossmeisl J, Nørskov JK (2008) Phys Chem Chem Phys 10:3722

    Article  CAS  Google Scholar 

  61. Rossmeisl J, Chan K, Ahmed R, Tripković V, Björketun ME (2013) Phys Chem Chem Phys 15:10321

    Article  CAS  Google Scholar 

  62. Janthon P, Kozlov SM, Viñes F, Limtrakul J, Illas F (2013) J Chem Theory Comput 9:1631

    Article  CAS  Google Scholar 

  63. Vitos L, Ruban AV, Skriver HL, Kollár J (1998) Surf Sci 411:186

    Article  CAS  Google Scholar 

  64. Rossmeisl J, Karlberg GS, Jaramillo T, Nørskov JK (2008) Faraday Discuss 140:337

    Article  CAS  Google Scholar 

  65. Tripkovic V, Skúlason E, Siahrostami S, Nørskov JK (2010) Rossmeisl J Electrochim Acta 55:7975

    Article  CAS  Google Scholar 

  66. Janik MJ, Taylor CD, Neurock M (2009) J Electrochem Soc 156:B126

    Article  CAS  Google Scholar 

  67. Tripković V, Abild-Pedersen F, Studt F, Cerri I, Nagami T, Bligaard T (2010) Rossmeisl J 4:228

    Google Scholar 

Download references

Acknowledgments

We greatly acknowledge support from Toyota Motor Europe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isotta Cerri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 649 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripković, V., Cerri, I., Bligaard, T. et al. The Influence of Particle Shape and Size on the Activity of Platinum Nanoparticles for Oxygen Reduction Reaction: A Density Functional Theory Study. Catal Lett 144, 380–388 (2014). https://doi.org/10.1007/s10562-013-1188-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1188-y

Keywords

Navigation