Skip to main content
Log in

Plasma-enabled sensing of urea and related amides on polyaniline

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The atmospheric pressure plasma jet (APPJ) was used to enhance the sensitivity of industrially important polyaniline (PANI) for detection of organic vapors from amides. The gas sensing mechanism of PANI is operating on the basis of reversible protonation or deprotonation, whereas the driving force to improve the sensitivity after plasma modifications is unknown. Herein we manage to solve this problem and investigate the sensing mechanism of atmospheric plasma treated PANI for vapor detection of amides using urea as a model. The results from various analytical techniques indicate that the plausible mechanism responsible for the improved sensitivity after plasma treatment is operating through a cyclic transition state formed between the functional groups introduced by plasma treatment and urea. This transition state improved the sensitivity of PANI towards 15 ppm of urea by a factor of 2.4 times compared to the non-treated PANI. This plasma treated PANI is promising for the improvement of the sensitivity and selectivity towards other toxic and carcinogenic amide analytes for gas sensing applications such as improving material processing and controlling food quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Macdiarmid A G, Chiang J C, Richter A F, Epstein A J. Polyaniline: A new concept in conducting polymers. Synthetic Metals, 1987, 18: 285–290

    Article  CAS  Google Scholar 

  2. Hao B, Li L, Wang Y, Qian H, Tong G, Chen H, Chen K. Electrical and microwave absorbing properties of polypyrrole synthesized by optimum strategy. Journal of Applied Polymer Science, 2013, 127: 4273–4279

    Article  CAS  Google Scholar 

  3. Trivedi D C. Polyanilines. In: Nalwa H S, ed. Handbook of Organic Conductive Molecules and Polymers, vol. 2. New Jersey: John Wiley & Sons, 1997, 505

    Google Scholar 

  4. Ayad M M, El-Hefnawey G, Torad N L. A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance. Journal of Hazardous Materials, 2009, 168: 85–88

    Article  CAS  Google Scholar 

  5. Nicolas-Debarnot D, Poncin-Epaillard F. Polyaniline as a new sensitive layer for gas sensors. Analytica Chimica Acta, 2003, 475: 1–15

    Article  CAS  Google Scholar 

  6. Zhang X, Qin Z, Liu X, Liang B, Liu N, Zhou Z, Zhu M. Flexible sensing fibers based on polyaniline-coated polyurethane for chloroform vapor detection. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1: 10327–10333

    Article  CAS  Google Scholar 

  7. Jaymand M. Recent progress in chemical modification of polyaniline. Progress in Polymer Science, 2013, 38: 1287–1306

    Article  CAS  Google Scholar 

  8. Kang E T, Ma Z H, Tan K L, Zhu B R, Uyama Y, Ikada Y. Surface modification and functionalization of electroactive polymer films. Polymers for Advanced Technologies, 1999, 10: 421–428

    Article  CAS  Google Scholar 

  9. Kang E T, Kato K, Uyama Y, Ikada Y. Plasma treatment of polyaniline films: Effect on the intrinsic oxidation states. Journal of Materials Research, 1996, 11: 1570–1573

    Article  CAS  Google Scholar 

  10. Kunzo P, Lobotka P, Micusik M, Kovacova E. Palladium-free hydrogen sensor based on oxygen-plasma-treated polyaniline thin film. Sensors and Actuators. B, Chemical, 2012, 171-172: 838–845

    Article  CAS  Google Scholar 

  11. Yoo K P, Kwon K H, Min N K, Lee M J, Lee C J. Effects of O2 plasma treatment on NH3 sensing characteristics of multiwall carbon nanotube/polyaniline composite films. Sensors and Actuators. B, Chemical, 2009, 143: 333–340

    Article  Google Scholar 

  12. Du H Y, Wang J, Yao P J, Hao YW, Li X G. Preparation of modified MWCNTs-doped PANI nanorods by oxygen plasma and their ammonia-sensing properties. Journal of Materials Science, 2013, 48: 3597–3604

    Article  CAS  Google Scholar 

  13. Koebel M, Elsener M. Determination of urea and its thermal decomposition products by high-performance liquid chromatography. Journal of Chromatography. A, 1995, 689: 164–169

    Article  CAS  Google Scholar 

  14. Bertocci P, Compagnone D, Palleschi G. Amperometric ammonium ion and urea determination with enzyme-based probes. Biosensors and Bioelectronics, 1996, 11: 1–10

    Article  Google Scholar 

  15. Palmqvist E, Kriz C B, Svanberg K, Khayyami M, Kriz D. DCresistometric urea sensitive device utilizing a conducting polymer film for the gas-phase detection of ammonia. Biosensors & Bioelectronics, 1995, 10: 283–287

    Article  CAS  Google Scholar 

  16. Stejskal J, Gilbert R G. Polyaniline: Preparation of a conducting polymer (IUPAC technical report). Pure and Applied Chemistry, 2002, 74: 857–867

    Article  CAS  Google Scholar 

  17. Zaplotnik R, Bišcan M, Kregar Z, Vesel A, Cvelbar U, Mozetic M, Miloševic S. Influence of a samples surface on single electrode atmospheric pressure plasma jet parameters. Spectrochemica acta B, 2014, 103/104: 124–130

    Google Scholar 

  18. Zaplotnik R, Kregar Z, Bišcan M, Vesel A, Cvelbar U, Mozetic M, Miloševic S. Multiple vs. single harmonics AC-driven atmospheric pressure plasma jet. Europhysics Letters, 2014, 106: 25001

    Article  Google Scholar 

  19. Niu L, Luo Y, Li Z. A highly selective chemical gas sensor based on functionalization of multi-walled carbon nanotubes with poly (ethylene glycol). Sensors and Actuators. B, Chemical, 2007, 126: 361–367

    Article  CAS  Google Scholar 

  20. Slobodian P, Riha P, Lengalova A, Svoboda P, Saha P. Multi-wall carbon nanotube networks as potential resistive gas sensors for organic vapor detection. Carbon, 2011, 49: 2499–2507

    Article  CAS  Google Scholar 

  21. Wen N, Brooker M H. Urea protonation: Raman and theoretical study. Journal of Physical Chemistry, 1993, 97: 8608–8616

    Article  CAS  Google Scholar 

  22. Kang E T, Ma Z H, Tan K L, Zhu B R, Uyama Y, Ikada Y. Surface modification and functionalization of electroactive polymer films. Polymers for Advanced Technologies, 1999, 10: 421–428

    Article  CAS  Google Scholar 

  23. Puliyalil H, Cvelbar U, Filipic G, Petric A D, Zaplotnik R, Recek N, Mozetic M, Thomas S. Plasma as a tool for enhancing insulation properties of polymer composites. RSC Advances, 2015, 5: 37853–37858

    Article  CAS  Google Scholar 

  24. Qaiser A A, Hyland M M, Patterson D A. Surface and charge transport characterization of polyaniline-cellulose acetate composite membranes. Journal of Physical Chemistry B, 2011, 115: 1652–1661

    Article  CAS  Google Scholar 

  25. Peng H, Mo Z, Liao S, Liang H, Yang L, Luo F, Song H, Zhong Y, Zhang B. High performance Fe-and N-doped carbon catalyst with graphene structure for oxygen reduction. Scientific Reports, 2013, 3: 1765

    Google Scholar 

  26. Batich C D, Donald D S. X-ray photoelectron spectroscopy of nitroso compounds: Relative ionicity of the closed and open forms. Journal of the American Chemical Society, 1984, 106: 2758–2761

    Article  CAS  Google Scholar 

  27. Angelopoulos M, Asturias G E, Ermer S P, Ray A, Scherr E M, Macdiarmid A G, Akhtar M, Kiss Z, Epstein A J. Polyaniline: Solutions, films and oxidation state. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1988, 160: 151–163

    Article  Google Scholar 

  28. Trchová M, Stejskal J. Polyaniline: The infrared spectroscopy of conducting polymer nanotubes. Pure and Applied Chemistry, 2011, 83: 1803–1817

    Article  Google Scholar 

  29. Boer F P, Shannon T W, Mclafferty F W. Electronic structure of the six-membered cyclic transition state in some gamma hydrogen rearrangements. Journal of the American Chemical Society, 1968, 90: 7239–7248

    Article  CAS  Google Scholar 

  30. Ostrikov K, Yoon N J, Rider A E, Vladimirov S V. Twodimensional simulation of nanoassembly precursor species in Ar + H2+ C2H2 reactive plasmas. Plasma Processes and Polymers, 2007, 4: 27–40

    Article  CAS  Google Scholar 

  31. Arockiam P B, Bruneau C, Dixneuf P H. Ruthenium (II)-catalyzed C–H bond activation and functionalization. Chemical Reviews, 2012, 112: 5879–5918

    Article  CAS  Google Scholar 

  32. Dang Y, Qu S, Nelson J W, Pham H D, Wang Z X, Wang X. The mechanism of a ligand-promoted sp3 C–H activation and arylation reaction via palladium catalysis: Theoretical demonstration of a Pd (II)/Pd(IV) redox manifold. Journal of the American Chemical Society, 2015, 137: 2006–2014

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uroš Cvelbar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puliyalil, H., Slobodian, P., Sedlacik, M. et al. Plasma-enabled sensing of urea and related amides on polyaniline. Front. Chem. Sci. Eng. 10, 265–272 (2016). https://doi.org/10.1007/s11705-016-1570-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-016-1570-6

Keywords

Navigation