Skip to main content
Log in

Spray synthesis of rapid recovery ZnO/polyaniline film ammonia sensor at room temperature

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

As an excellent room temperature sensing material, polyaniline (PANI) needs to be further investigated in the field of high sensitivity and sustainable gas sensors due to its long recovery time and difficulty to complete recovery. The ZnO/PANI film with p–n heterogeneous energy levels have successfully prepared by spraying ZnO nanorod synthesized by hydrothermal method on the PANI film rapidly synthesized at the gas—liquid interface. The presence of p–n heterogeneous energy levels enables the ZnO/PANI film to detect 0.1–100 ppm (1 ppm = 10−6) NH3 at room temperature with the response value to 100 ppm NH3 doubled (12.96) and the recovery time shortened to 1/5 (31.2 s). The ability of high response and fast recovery makes the ZnO/PANI film to be able to detect NH3 at room temperature continuously. It provides a new idea for PANI to prepare sustainable room temperature sensor and promotes the development of room temperature sensor in public safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanguy N R, Thompson M, Yan N. A review on advances in application of polyaniline for ammonia detection. Sensors and Actuators B: Chemical, 2018, 257: 1044–1064

    Article  CAS  Google Scholar 

  2. Love C, Nazemi H, El-Masri E, et al. A review on advanced sensing materials for agricultural gas sensors. Sensors, 2021, 21: 3423

    Article  CAS  Google Scholar 

  3. Liu X, Zheng W, Kumar R, et al. Conducting polymer-based nanostructures for gas sensors. Coordination Chemistry Reviews, 2022, 462: 214517

    Article  CAS  Google Scholar 

  4. Farea M A, Mohammed H Y, Shirsat S M, et al. Hazardous gases sensors based on conducting polymer composites. Chemical Physics Letters, 2021, 776: 138703

    Article  CAS  Google Scholar 

  5. Beygisangchin M, Abdul Rashid S, Shafie S, et al. Preparations, properties, and applications of polyaniline and polyaniline thin films — a review. Polymers, 2021, 13(12): 2003

    Article  CAS  Google Scholar 

  6. Laranjeira J M G, da Silva E F Jr, de Azevedo W M, et al. AFM studies of polyaniline nanofilms irradiated with gamma rays. Microelectronics Journal, 2003, 34(5–8): 511–513

    Article  CAS  Google Scholar 

  7. Chabukswar V V, Pethkar S, Athawale A A. Acrylic acid doped polyaniline as an ammonia sensor. Sensors and Actuators B: Chemical, 2001, 77(3): 657–663

    Article  CAS  Google Scholar 

  8. Zhang T, Qi H, Liao Z, et al. Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances. Nature Communications, 2019, 10(1): 4225

    Article  Google Scholar 

  9. Kukla A L, Shirshov Y M, Piletsky S A. Ammonia sensors based on sensitive polyaniline films. Sensors and Actuators B: Chemical, 1996, 37(3): 135–140

    Article  CAS  Google Scholar 

  10. Sengupta P P, Barik S, Adhikari B. Polyaniline as a gas-sensor material. Materials and Manufacturing Processes, 2006, 21(3): 263–270

    Article  CAS  Google Scholar 

  11. Sun Y F, Liu S B, Meng F L, et al. Metal oxide nanostructures and their gas sensing properties: a review. Sensors, 2012, 12(3): 2610–2631

    Article  CAS  Google Scholar 

  12. Zhang D L, Zhang J B, Guo Z, et al. Optical and electrical properties of zinc oxide thin films with low resistivity via Li-N dual-acceptor doping. Journal of Alloys and Compounds, 2011, 509(20): 5962–5968

    Article  CAS  Google Scholar 

  13. Murugadoss G. Synthesis and characterization of transition metals doped ZnO nanorods. Journal of Materials Science and Technology, 2012, 28(7): 587–593

    Article  CAS  Google Scholar 

  14. Zhang J Y, Feng H B, Hao W C, et al. Luminescence of nanosized ZnO/polyaniline films prepared by self-assembly. Ceramics International, 2007, 33(5): 785–788

    Article  CAS  Google Scholar 

  15. Ji L C, Huang L, Liu Y, et al. Optical and electrical properties of zinc oxide/indium/zinc oxide multilayer structures. Thin Solid Films, 2011, 519(11): 3789–3791

    Article  CAS  Google Scholar 

  16. Li Z, Liu X, Zhou M, et al. Plasma-induced oxygen vacancies enabled ultrathin ZnO films for highly sensitive detection of triethylamine. Journal of Hazardous Materials, 2021, 415: 125757

    Article  CAS  Google Scholar 

  17. Kruefu V, Wisitsoraat A, Tuantranont A, et al. Gas sensing properties of conducting polymer/Au-loaded ZnO nanoparticle composite materials at room temperature. Nanoscale Research Letters, 2014, 9(1): 467

    Article  Google Scholar 

  18. Das M, Sarkar D. One-pot synthesis of zinc oxide-polyaniline nanocomposite for fabrication of efficient room temperature ammonia gas sensor. Ceramics International, 2017, 43(14): 11123–11131

    Article  CAS  Google Scholar 

  19. Gilja V, Živkovic I, Klaser T, et al. The impact of in situ polymerization conditions on the structures and properties of PANI/ZnO-based multiphase composite photocatalysts. Catalysts, 2020, 10(4): 400

    Article  CAS  Google Scholar 

  20. Parangusan H, Bhadra J, Ahmad Z, et al. Humidity sensor based on poly(lactic acid)/PANI—ZnO composite electrospun fibers. RSC Advances, 2021, 11(46): 28735–28743

    Article  CAS  Google Scholar 

  21. Patil S L, Chougule M A, Sen S, et al. Measurements on room temperature gas sensing properties of CSA doped polyaniline-ZnO nanocomposites. Measurement, 2012, 45(3): 243–249

    Article  Google Scholar 

  22. Gao R, Cheng X L, Gao S, et al. Highly selective detection of saturated vapors of abused drugs by ZnO nanorod bundles gas sensor. Applied Surface Science, 2019, 485: 266–273

    Article  CAS  Google Scholar 

  23. Liu C H, Tai H L, Zhang P, et al. A high-performance flexible gas sensor based on self-assembled PANI—CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sensors and Actuators B: Chemical, 2018, 261: 587–597

    Article  CAS  Google Scholar 

  24. Kumar L, Rawal I, Kaur A, et al. Flexible room temperature ammonia sensor based on polyaniline. Sensors and Actuators B: Chemical, 2017, 240: 408–416

    Article  CAS  Google Scholar 

  25. Li Y, Jiao M F, Zhao H J, et al. High performance gas sensors based on in-situ fabricated ZnO/polyaniline nanocomposite: the effect of morphology on the sensing properties. Sensors and Actuators B: Chemical, 2018, 264: 285–295

    Article  CAS  Google Scholar 

  26. Wu Z, Sun X, Guo X, et al. Development of a rGO-BiVO4 heterojunction humidity sensor with boosted performance. ACS Applied Materials & Interfaces, 2021, 13(23): 27188–27199

    Article  CAS  Google Scholar 

  27. Sarma T K, Chattopadhyay A. Reversible encapsulation of nanometer-size polyaniline and polyaniline—Au—nanoparticle composite in starch. Langmuir, 2004, 20(11): 4733–4737

    Article  CAS  Google Scholar 

  28. Sharma B K, Gupta A K, Khare N, et al. Synthesis and characterization of polyaniline—ZnO composite and its dielectric behavior. Synthetic Metals, 2009, 159(5–6): 391–395

    Article  CAS  Google Scholar 

  29. Dhingra M, Kumar L, Shrivastava S, et al. Impact of interfacial interactions on optical and ammonia sensing in zinc oxide/polyaniline structures. Bulletin of Materials Science, 2013, 36(4): 647–652

    Article  CAS  Google Scholar 

  30. Altun B, Karaduman Er I, Çağirtekin A O, et al. Effect of Cd dopant on structural, optical and CO2 gas sensing properties of ZnO thin film sensors fabricated by chemical bath deposition method. Applied Physics A, 2021, 127(9): 687

    Article  CAS  Google Scholar 

  31. Paul G K, Bhaumik A, Patra A S, et al. Enhanced photo-electric response of ZnO/polyaniline layer-by-layer self-assembled films. Materials Chemistry and Physics, 2007, 106(2–3): 360–363

    Article  CAS  Google Scholar 

  32. Gayathri S, Jayabal P, Kottaisamy M, et al. Synthesis of ZnO decorated graphene nanocomposite for enhanced photocatalytic properties. Journal of Applied Physics, 2014, 115(17): 173504

    Article  Google Scholar 

  33. Jain S, Karmakar N, Shah A, et al. Development of Ni doped ZnO/polyaniline nanocomposites as high response room temperature NO2 sensor. Materials Science and Engineering B, 2019, 247: 114381

    Article  CAS  Google Scholar 

  34. Zhang J X, Liu C, Shi G Q. Raman spectroscopic study on the structural changes of polyaniline during heating and cooling processes. Journal of Applied Polymer Science, 2005, 96(3): 732–739

    Article  CAS  Google Scholar 

  35. Mažeikienė R, Tomkute V, Kuodis Z, et al. Raman spectroelectrochemical study of polyaniline and sulfonated polyaniline in solutions of different pH. Vibrational Spectroscopy, 2007, 44(2): 201–208

    Article  Google Scholar 

  36. Jain M, Annapoorni S. Raman study of polyaniline nanofibers prepared by interfacial polymerization. Synthetic Metals, 2010, 160(15–16): 1727–1732

    Article  CAS  Google Scholar 

  37. Cochet M, Louarn G, Quillard S, et al. Theoretical and experimental vibrational study of emeraldine in salt form. Journal of Raman Spectroscopy, 2000, 31(12): 1041–1049

    Article  CAS  Google Scholar 

  38. Pei Z X, Ding L Y, Lu M L, et al. Synergistic effect in polyaniline-hybrid defective ZnO with enhanced photocatalytic activity and stability. The Journal of Physical Chemistry C, 2014, 118(18): 9570–9577

    Article  CAS  Google Scholar 

  39. Wu J M, Chen Y, Pan L, et al. Multi-layer monoclinic BiVO4 with oxygen vacancies and V4+ species for highly efficient visible-light photoelectrochemical applications. Applied Catalysis B: Environmental, 2018, 221: 187–195

    Article  CAS  Google Scholar 

  40. Xu D M, Guan M Y, Xu Q H, et al. Multilayer films of layered double hydroxide/polyaniline and their ammonia sensing behavior. Journal of Hazardous Materials, 2013, 262: 64–70

    Article  CAS  Google Scholar 

  41. Chang Q F, Zhao K, Chen X, et al. Preparation of gold/polyaniline/multiwall carbon nanotube nanocomposites and application in ammonia gas detection. Journal of Materials Science, 2008, 43(17): 5861–5866

    Article  CAS  Google Scholar 

  42. Zhu C, Dong X, Guo C, et al. Template-free synthesis of a wafer-sized polyaniline nanoscale film with high electrical conductivity for trace ammonia gas sensing. Journal of Materials Chemistry A, 2022, 10(22): 12150–12156

    Article  CAS  Google Scholar 

  43. Pawar S G, Chougule M A, Patil S L, et al. Room temperature ammonia gas sensor based on polyaniline-TiO2 nanocomposite. IEEE Sensors Journal, 2011, 11(12): 3417–3423

    Article  CAS  Google Scholar 

  44. Ansari M O, Khan M M, Ansari S A, et al. Enhanced thermoelectric performance and ammonia sensing properties of sulfonated polyaniline/graphene thin films. Materials Letters, 2014, 114: 159–162

    Article  CAS  Google Scholar 

  45. Wu Z Q, Chen X D, Zhu S B, et al. Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sensors and Actuators B: Chemical, 2013, 178: 485–493

    Article  CAS  Google Scholar 

  46. Wang C, Yang M, Liu L, et al. One-step synthesis of polypyrrole/Fe2O3 nanocomposite and the enhanced response of NO2 at low temperature. Journal of Colloid and Interface Science, 2020, 560: 312–320

    Article  CAS  Google Scholar 

  47. Deng Y C, Tang L, Zeng G M, et al. Enhanced visible light photocatalytic performance of polyaniline modified mesoporous single crystal TiO2 microsphere. Applied Surface Science, 2016, 387: 882–893

    Article  CAS  Google Scholar 

  48. Zhu C, Cakmak U, Sheikhnejad O, et al. One step synthesis of PANI/Fe2O3 nanocomposites and flexible film for enhanced NH3 sensing performance at room temperature. Nanotechnology, 2019, 30(25): 255502

    Article  CAS  Google Scholar 

  49. Perfecto T M, Zito C A, Volanti D P. Effect of NiS nanosheets on the butanone sensing performance of ZnO hollow spheres under humidity conditions. Sensors and Actuators B: Chemical, 2021, 334: 129684

    Article  CAS  Google Scholar 

  50. Srivastava S, Kumar S, Singh V N, et al. Synthesis and characterization of TiO2 doped polyaniline composites for hydrogen gas sensing. International Journal of Hydrogen Energy, 2011, 36(10): 6343–6355

    Article  CAS  Google Scholar 

  51. Liu B H, Liu X Y, Yuan Z, et al. A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature. Sensors and Actuators B: Chemical, 2019, 295: 86–92

    Article  CAS  Google Scholar 

  52. Patil U V, Ramgir N S, Karmakar N, et al. Room temperature ammonia sensor based on copper nanoparticle intercalated polyaniline nanocomposite thin films. Applied Surface Science, 2015, 339: 69–74

    Article  CAS  Google Scholar 

  53. Talwar V, Singh O, Singh R C. ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor. Sensors and Actuators B: Chemical, 2014, 191: 276–282

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21771060 and 61271126), the International Science & Technology Cooperation Program of China (Grant No. 2016YFE0115100), the Program for Science and Technology Project of Heilongjiang Province (Grant No. JQ2021B002), the Heilongjiang Provincial Natural Science Foundation of China (Grant No. 2019LH0320), the Reform and Development Fund Project of Local University supported by the Central Government, Heilongjiang Touyan Innovation Team Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Dong, Bin Wang or Xiaoli Cheng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Dong, X., Guo, C. et al. Spray synthesis of rapid recovery ZnO/polyaniline film ammonia sensor at room temperature. Front. Mater. Sci. 16, 220620 (2022). https://doi.org/10.1007/s11706-022-0620-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-022-0620-x

Keywords

Navigation