Skip to main content
Log in

The effect of different protonic acid doping on the sensitivity of polyaniline to ammonia gas

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, a room temperature operable and selective ammonia (NH3) gas sensor based on polyaniline (PANI) nanocomposite was successfully developed on the interdigital electrode through a chemical oxidative polymerization process. This work reports the first instance of PANI being doped with amino acid (Serine) as a protonic acid, while PANI was also doped with nitric acid (HNO3) and tartaric acid (Tartaric-acid) for the control experiment. The composition of materials, surface morphology, and structural elucidation of PANI@Serine were systematically analyzed using X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and X-ray diffraction, respectively. The gas sensing performances of the PANI@Serine sensor were thoroughly studied and compared with PANI@HNO3 and PANI@Tartaric-acid. The PANI@Serine sensor exhibited excellent gas sensing capabilities towards NH3 at 25 ± 2 °C, with a response of 6.12 towards 16 ppm of NH3. This response was 4.29 times higher than PANI@Tartaric-acid and 5.81 times higher than PANI@HNO3 sensor. Furthermore, the PANI@Serine sensor demonstrated a low detection limit of 10 ppm NH3, favorable recovery characteristics and stability, selectivity, and response. The density functional theory (DFT) of the three doped PANI was extensively calculated, and the adsorption behavior of NH3 was analyzed. The results revealed that PANI@Serine exhibited a double adsorption effect on NH3 gas molecules, with significantly higher adsorption performance compared to PANI@HNO3 and PANI@Tartaric-acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data and code availability

The raw data are available at the corresponding author and can be presented for reasonable requests.

References

  1. Q. Hu, Z. Wang, J. Chang, P. Wan, J. Huang, L. Feng, Design and preparation of hollow NiO sphere- polyaniline composite for NH3 gas sensing at room temperature. Sens. Actuators B 344, 78 (2021)

    Google Scholar 

  2. H.S. Kim, J. Choi, J. Kong, H. Kim, S.J. Yoo, H.S. Park, Regenerative electrocatalytic redox cycle of copper sulfide for sustainable NH3 production under ambient conditions. ACS Catal. 11, 435–445 (2020)

    Google Scholar 

  3. W.-J. Jiang, J.-B. Zhang, Y.-T. Zou, H.-L. Peng, K. Huang, Manufacturing Acidities of hydrogen-bond donors in deep eutectic solvents for effective and reversible NH3 capture. ACS Sustain. Chem. Eng. 8, 13408–13417 (2020)

    CAS  Google Scholar 

  4. Z. Ma, P. Chen, W. Cheng, K. Yan, L. Pan, Y. Shi et al., Highly sensitive, printable nanostructured conductive polymer wireless sensor for food spoilage detection. Nano Lett. 18, 4570–4575 (2018)

    ADS  CAS  PubMed  Google Scholar 

  5. S. Pandey, Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: a comprehensive review. J. Sci. 1, 431–453 (2016)

    Google Scholar 

  6. C. Balamurugan, D.W. Lee, A selective NH3 gas sensor based on mesoporous p-type NiV2O6 semiconducting nanorods synthesized using solution method. Sens. Actuators B 192, 414–422 (2014)

    CAS  Google Scholar 

  7. M. Yu, S. Zeng, Z. Wang, Z. Hu, H. Dong, Y. Nie et al., Protic Ionic-liquid-supported activated carbon with hierarchical pores for efficient NH3 adsorption. ACS Sustain. Chem. Eng. 7, 11769–11777 (2019)

    CAS  Google Scholar 

  8. Y. Zhu, L. Yu, D. Wu, W. Lv, L. Wang, A high-sensitivity graphene ammonia sensor via aerosol jet printing. Sens. Actuators A 318, 8 (2021)

    Google Scholar 

  9. C.S. Luo, P. Wan, H. Yang, S.A.A. Shah, X. Chen, Healable transparent electronic devices. Adv. Funct. Mater. 27, 89 (2017)

    Google Scholar 

  10. J. Wu, Q. Zhang, A. Zhou, Z. Huang, H. Bai, L. Li, Phase-separated polyaniline/graphene composite electrodes for high-rate electrochemical supercapacitors. Adv. Mater. 28, 10211–10216 (2016)

    CAS  PubMed  Google Scholar 

  11. M. Xue, F. Li, J. Zhu, H. Song, M. Zhang, T. Cao, Structure-based enhanced capacitance in situ growth of highly ordered polyaniline nanorods on reduced graphene oxide patterns. Adv. Funct. Mater. 22, 1284–1290 (2012)

    CAS  Google Scholar 

  12. Y. Wang, J. Liu, X. Cui, Y. Gao, J. Ma, Y. Sun et al., NH3 gas sensing performance enhanced by Pt-loaded on mesoporous WO3. Sens. Actuators B Chem. 238, 473–481 (2017)

    CAS  Google Scholar 

  13. T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, X. Sun, Flexible transparent electronic gas sensors. Small 12, 3748–3756 (2016)

    CAS  PubMed  Google Scholar 

  14. P. Wan, X. Wen, C. Sun, B.K. Chandran, H. Zhang, X. Sun et al., Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing. Small 11, 5409–5415 (2015)

    ADS  CAS  PubMed  Google Scholar 

  15. B. Li, Y. Li, P. Ma, Synthesis of different inorganic acids doped polyaniline materials and behavior of enhancing NH3 gas sensing properties. Org. Electron. 114, 89 (2023)

    Google Scholar 

  16. B. Li, Y. Li, P. Ma, Synthesis of H2SO4-doped polyaniline materials and behavior of enhancing gas sensing properties. J. Mater. Sci. 33, 18673–18685 (2022)

    CAS  Google Scholar 

  17. L. Xue, W. Wang, Y. Guo, G. Liu, P. Wan, Flexible polyaniline/carbon nanotube nanocomposite film-based electronic gas sensors. Sens. Actuators B 244, 47–53 (2017)

    CAS  Google Scholar 

  18. S. Bai, Y. Zhao, J. Sun, Y. Tian, R. Luo, D. Li et al., Ultrasensitive room temperature NH3 sensor based on a graphene-polyaniline hybrid loaded on PET thin film. Chem. Commun. (Camb.) 51, 7524–7527 (2015)

    CAS  PubMed  Google Scholar 

  19. K. Uh, T. Kim, C.W. Lee, J.-M. Kim, A precursor approach to electrospun polyaniline nanofibers for gas sensors. Macromol. Mater. Eng. 301, 1320–1326 (2016)

    CAS  Google Scholar 

  20. Y. Zhang, J.J. Kim, D. Chen, H.L. Tuller, G.C. Rutledge, Electrospun Polyaniline fibers as highly sensitive room temperature chemiresistive sensors for ammonia and nitrogen dioxide gases. Adv. Func. Mater. 24, 4005–4014 (2014)

    CAS  Google Scholar 

  21. S. Bera, S. Kundu, H. Khan, S. Jana, Polyaniline coated graphene hybridized SnO2 nanocomposite: Low temperature solution synthesis, structural property and room temperature ammonia gas sensing. J. Alloys Compd. 744, 260–270 (2018)

    CAS  Google Scholar 

  22. H.A. Mohammed, S.A. Rashid, M.H. Abu-Bakar, S.B. Ahmad-Anas, M.A. Mahdi, M.H. Yaacob, Fabrication and characterizations of a novel etched-tapered single mode optical fiber ammonia sensors integrating PANI/GNF nanocomposite. Sens. Actuators B 287, 71–79 (2019)

    CAS  Google Scholar 

  23. S. Jiang, J. Chen, J. Tang, E. Jin, L. Kong, W. Zhang et al., Au nanoparticles-functionalized two-dimensional patterned conducting PANI nanobowl monolayer for gas sensor. Sens. Actuators B 140, 520–524 (2009)

    CAS  Google Scholar 

  24. S. Subhadarshini, R. Singh, A. Mandal, S. Roy, S. Mandal, S. Mallik, D.K. Goswami, A.K. Das, N.C. Das, Silver nanodot decorated dendritic copper foam as a hydrophobic and mechano-chemo bactericidal surface. Langmuir 37, 9356–9370 (2021)

    CAS  PubMed  Google Scholar 

  25. S. Subhadarshini, E. Pavitra, G.S.R. Raju, N.R. Chodankar, A. Mandal, S. Roy, S. Mandal, M.V.B. Rao, D.K. Goswami, Y.S. Huh, N.C. Das, One-pot facile synthesis and electrochemical evaluation of selenium enriched cobalt selenide nanotube for supercapacitor application. Ceram. Int. 47, 15293–15306 (2021)

    CAS  Google Scholar 

  26. Q. Zhao, Z. Yuan, Z. Duan, Y. Jiang, X. Li, Z. Li et al., An ingenious strategy for improving humidity sensing properties of multi-walled carbon nanotubes via poly-L-lysine modification. Sens. Actuators B 289, 182–185 (2019)

    CAS  Google Scholar 

  27. D. Lv, W. Shen, W. Chen, R. Tan, L. Xu, W. Song, PSS-PANI/PVDF composite based flexible NH3 sensors with sub-ppm detection at room temperature. Sens. Actuators B 328, 89 (2021)

    Google Scholar 

  28. S.B. Kulkarni, Y.H. Navale, S.T. Navale, F.J. Stadler, N.S. Ramgir, V.B. Patil, Hybrid polyaniline-WO3 flexible sensor: a room temperature competence towards NH3 gas. Sens. Actuators B 288, 279–288 (2019)

    CAS  Google Scholar 

  29. B.P.J. de Lacy-Costello, R.J. Ewen, N.M. Ratcliffe, M. Richards, Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles. Sens. Actuators B 134, 945–952 (2008)

    Google Scholar 

  30. C. Ge, C. Xie, M. Hu, Y. Gui, Z. Bai, D. Zeng, Structural characteristics and UV-light enhanced gas sensitivity of La-doped ZnO nanoparticles. Mater. Sci. Eng. B 141, 43–48 (2007)

    CAS  Google Scholar 

  31. Y. Zhang, Z. Duan, H. Zou, M. Ma, Drawn a facile sensor: a fast response humidity sensor based on pencil-trace. Sens. Actuators B 261, 345–353 (2018)

    CAS  Google Scholar 

  32. B. Liu, S. Wang, Z. Yuan, Z. Duan, Q. Zhao, Y. Zhang et al., Novel chitosan/ZnO bilayer film with enhanced humidity-tolerant property: endowing triboelectric nanogenerator with acetone analysis capability. Nano Energy 78, 8 (2020)

    Google Scholar 

  33. S. Li, P. Lin, L. Zhao, C. Wang, D. Liu, F. Liu et al., The room temperature gas sensor based on polyaniline@flower-like WO3 nanocomposites and flexible PET substrate for NH3 detection. Sens. Actuators B 259, 505–513 (2018)

    CAS  Google Scholar 

  34. S. Li, T. Wang, Z. Yang, J. He, J. Wang, L. Zhao et al., Room temperature high performance NH3 sensor based on GO-rambutan-like polyaniline hollow nanosphere hybrid assembled to flexible PET substrate. Sens. Actuators B 273, 726–734 (2018)

    CAS  Google Scholar 

  35. B. Li, Y. Li, P. Ma, Amino acids doped PANI sensitive materials for ammonia gas sensors operated at room temperature. Org. Electron. 122, 78 (2023)

    Google Scholar 

  36. P. Liu, Y. Huang, J. Yan, Y. Zhao, Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption. J. Mater. Chem. C 4, 6362–6370 (2016)

    CAS  Google Scholar 

  37. Z. Wang, J. Chang, H. Zhi, C. Li, L. Feng, A PDA functionalized CNT/PANI self-powered sensing system for meat spoilage biomarker NH3 monitoring. Sens. Actuators B 356, 89 (2022)

    Google Scholar 

  38. Z. Hou, S. Zou, J. Li, Morphology and structure control of amine- functionalized graphene/polyaniline composite for high-performance supercapacitors. J. Alloys Compd. 827, 89 (2020)

    Google Scholar 

  39. H.K. Chaudhari, D.S. Kelkar, Investigation of structure and electrical conductivity in doped polyaniline. Polym. Int. 42, 380–384 (1997)

    CAS  Google Scholar 

  40. S. George, Infrared and Raman Characteristic Group Frequencies (Wiley, New York, 2001)

    Google Scholar 

  41. S. Li, A. Liu, Z. Yang, L. Zhao, J. Wang, F. Liu et al., Design and preparation of the WO3 hollow spheres@PANI conducting films for room temperature flexible NH3 sensing device. Sens. Actuators B 289, 252–259 (2019)

    CAS  Google Scholar 

  42. Y. Qin, L. Wang, X. Wang, A high performance sensor based on PANI/ZnTi-LDHs nanocomposite for trace NH3 detection. Org. Electron. 66, 102–109 (2019)

    CAS  Google Scholar 

  43. T.P.R.G.K. Prasad, D.S. Kumar, M.G. Krishna, Ammonia sensing characteristics of thin film based on polyelectrolyte templated polyaniline. Sens. Actuators B 106, 626–631 (2005)

    CAS  Google Scholar 

  44. D. Degler, S.A. Müller, D.E. Doronkin, D. Wang, J.-D. Grunwaldt, U. Weimar et al., Platinum loaded tin dioxide: a model system for unravelling the interplay between heterogeneous catalysis and gas sensing. Journal of Materials Chemistry A 6, 2034–2046 (2018)

    CAS  Google Scholar 

  45. S. Li, A. Liu, Z. Yang, J. He, J. Wang, F. Liu et al., Room temperature gas sensor based on tin dioxide@polyaniline nanocomposite assembled on flexible substrate: ppb-level detection of NH3. Sens. Actuators B Chem. 299, 126970 (2019)

    CAS  Google Scholar 

  46. G. Nan, X. Yang, L. Wang, Z. Shuai, Y. Zhao, Nuclear tunneling effects of charge transport in rubrene, tetracene, and pentacene. Phys. Rev. B 79, 784 (2009)

    Google Scholar 

  47. Y.C. Cheng, R.J. Silbey, D.A. da Silva Filho, J.P. Calbert, J. Cornil, J.L. Brédas, Three-dimensional band structure and bandlike mobility in oligoacene single crystals: a theoretical investigation. J. Chem. Phys. 118, 3764–3774 (2003)

    ADS  CAS  Google Scholar 

  48. P. Stamenov, R. Madathil, J.M.D. Coey, Dynamic response of ammonia sensors constructed from polyaniline nanofibre films with varying morphology. Sens. Actuator, B 161, 989–999 (2012)

    CAS  Google Scholar 

  49. A.G.M.J.-C. Chiang, Polyaniline’ protonic acid doping of the emeraldine form to the metallic regime. Synth. Met. 13, 193–205 (1986)

    CAS  Google Scholar 

  50. J.K. Shaolin-Mu, Energy density and IR spectra of polyaniline synthesized electrochemically in the solutions of strong acids. Synth. Metals 98, 51–55 (1998)

    Google Scholar 

  51. X. Li, J. Xu, Y. Jiang, Z. He, B. Liu, H. Xie et al., Toward agricultural ammonia volatilization monitoring: A flexible polyaniline/Ti3C2T hybrid sensitive films based gas sensor. Sens. Actuators B 316, 98 (2020)

    Google Scholar 

  52. H. Tai, Y. Jiang, G. Xie, J. Yu, X. Chen, Fabrication and gas sensitivity of polyaniline–titanium dioxide nanocomposite thin film. Sens. Actuators B Chem. 125, 644–650 (2007)

    CAS  Google Scholar 

  53. R.K. Jha, M. Wan, C. Jacob, P.K. Guha, Ammonia vapour sensing properties of in situ polymerized conducting PANI-nanofiber/WS2 nanosheet composites. New J. Chem. 42, 735–745 (2018)

    CAS  Google Scholar 

  54. S. Abdulla, T.L. Mathew, B. Pullithadathil, Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection. Sens. Actuators B 221, 1523–1534 (2015)

    CAS  Google Scholar 

  55. F.-W. Zeng, X.-X. Liu, D. Diamond, K.T. Lau, Humidity sensors based on polyaniline nanofibres. Sens. Actuators B 143, 530–534 (2010)

    CAS  Google Scholar 

  56. L.T. Duy, T.Q. Trung, V.Q. Dang, B.-U. Hwang, S. Siddiqui, I.-Y. Son et al., Flexible transparent reduced graphene oxide sensor coupled with organic dye molecules for rapid dual-mode ammonia gas detection. Adv. Func. Mater. 26, 4329–4338 (2016)

    CAS  Google Scholar 

  57. F.P.-E.D. Nicolas-Debarnot, Polyaniline as a new sensitive layer for gas sensors. Anal. Chim.Acta 475, 1–15 (2003)

    CAS  Google Scholar 

  58. N.R. Tanguy, M. Thompson, N. Yan, A review on advances in application of polyaniline for ammonia detection. Sens. Actuators B Chem. 257, 1044–1064 (2018)

    CAS  Google Scholar 

  59. A. Liu, S. Lv, L. Jiang, F. Liu, L. Zhao, J. Wang et al., The gas sensor utilizing polyaniline/ MoS2 nanosheets/SnO2 nanotubes for the room temperature detection of ammonia. Sens. Actuators B 332, 89 (2021)

    Google Scholar 

  60. C. Zhu, U. Cakmak, O. Sheikhnejad, X. Cheng, X. Zhang, Y. Xu et al., One step synthesis of PANI/Fe2O3 nanocomposites and flexible film for enhanced NH3 sensing performance at room temperature. Nanotechnology 30, 255502 (2019)

    ADS  CAS  PubMed  Google Scholar 

  61. H. Li, Y. Chang, W. Zhu, C. Wang, C. Wang, S. Yin et al., Theoretical evidence of charge transfer interaction between SO2 and deep eutectic solvents formed by choline chloride and glycerol. Phys. Chem. Chem. Phys. 17, 28729–28742 (2015)

    CAS  PubMed  Google Scholar 

  62. Y.J. Cho, K.S. Yook, J.Y. Lee, A universal host material for high external quantum efficiency close to 25% and long lifetime in green fluorescent and phosphorescent OLEDs. Adv. Mater. 26, 4050–4055 (2014)

    CAS  PubMed  Google Scholar 

  63. S. Wang, Y. Miao, X. Yan, K. Ye, Y. Wang, A dibenzo[a, c]phenazine-11,12-dicarbonitrile (DBPzDCN) acceptor based thermally activated delayed fluorescent compound for efficient near-infrared electroluminescent devices. J. Mater. Chem. C 6, 6698–6704 (2018)

    CAS  Google Scholar 

  64. Y. Chen, L. Yu, H. Du, C. Hu, N. Liu, S. Ma et al., Hierarchical flower-like TiO2 microspheres for high-selective NH3 detection: a density functional theory study. Sens. Actuators B 345, 7 (2021)

    Google Scholar 

  65. J. He, X. Yan, A. Liu, R. You, F. Liu, S. Li et al., A rapid-response room-temperature planar type gas sensor based on DPA-Ph-DBPzDCN for the sensitive detection of NH3. J. Mater. Chem. A 7, 4744–4750 (2019)

    CAS  Google Scholar 

  66. S. Tiwari, A.K. Singh, L. Joshi, P. Chakrabarti, W. Takashima, K. Kaneto et al., Poly-3-hexylthiophene based organic field-effect transistor: Detection of low concentration of ammonia. Sens. Actuators B 171–172, 962–968 (2012)

    Google Scholar 

  67. H. Ullah, A.-U.-H.A. Shah, S. Bilal, K. Ayub, DFT study of polyaniline NH3, CO2, and CO gas sensors: comparison with recent experimental data. J. Phys. Chem. C 117, 23701–23711 (2013)

    CAS  Google Scholar 

  68. J. He, B. Liang, X. Yan, F. Liu, J. Wang, Z. Yang et al., A TPA-DCPP organic semiconductor film-based room temperature NH3 sensor for insight into the sensing properties. Sens. Actuators B 327, 78 (2021)

    Google Scholar 

  69. V. Nagarajan, R. Chandiramouli, First-principles investigation on interaction of NH3 gas on a silicene nanosheet molecular device. IEEE Trans. Nanotechnol. 16, 445–452 (2017)

    ADS  CAS  Google Scholar 

  70. R. Chandiramouli, First-principles insights on adsorption properties of NH3 on silicane nanoribbon and nanoring. Appl. Surf. Sci. 426, 1221–1231 (2017)

    ADS  CAS  Google Scholar 

  71. E. Wang, W. Mammo, M.R. Andersson, 25th anniversary article: isoindigo-based polymers and small molecules for bulk heterojunction solar cells and field effect transistors. Adv. Mater. 26, 1801–1826 (2014)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Project No. 51834004), Joint Fund of Henan Province Science and Technology R&D Program (Project No. 225200810035), and the Fundamental Research Funds for the Central Universities (Project Nos. N2225018 and 2325006).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

BL contributed to conceptualization, methodology, data curation, writing-review & editing, visualization, and validation. YL contributed to methodology, resources, project administration, supervision, and visualization. PM contributed to supervision, review & editing, visualization, and validation.

Corresponding author

Correspondence to Ying Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Ethical approval does not apply to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14162 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Li, Y. & Ma, P. The effect of different protonic acid doping on the sensitivity of polyaniline to ammonia gas. J Mater Sci: Mater Electron 35, 401 (2024). https://doi.org/10.1007/s10854-024-12175-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12175-6

Navigation