Skip to main content
Log in

Assessment of the Atomic Mobilities in fcc Cu-Fe and Cu-Ti Alloys

  • Basic and Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The experimentally measured diffusion coefficients of fcc Cu-Fe and Cu-Ti alloys in the published literature were reviewed critically in the present work. On the basis of the available thermodynamic information, the atomic mobilities of Cu, Fe, and Ti in fcc Cu-Fe and Cu-Ti alloys as a function of temperature and composition were assessed in terms of the CALPHAD method using the DICTRA® software. The optimized mobility parameters are presented. The calculated diffusion coefficients show an excellent agreement with the experimental data. The composition-distance profiles of the Cu-Ti binary diffusion couples reported in the literature were also predicted using the assessed mobility parameters. Overall good agreement is achieved between the experimental results and simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H.E. Hintermann and A.K. Chattopadhyay, New Generation Superabrasive Tool with Monolayer Configuration, Diam. Relat. Mater., 1992, 1, p 1131-1141

    Article  ADS  Google Scholar 

  2. R. Shiue, S. Buljan, and T. Eagar, Abrasion Resistant Active Braze Alloys for Metal Single Layer Technology, Sci. Technol. Weld. Join., 1997, 2, p 71-78

    Article  Google Scholar 

  3. T. Yamazaki and A. Suzumura, Role of the Reaction Product in the Solidification of Ag-Cu-Ti Filler for Brazing Diamond, J. Mater. Sci., 1998, 33, p 1379-1384

    Article  ADS  Google Scholar 

  4. F.A. Khalid, U.E. Klotz, H.-R. Elsener, B. Zigerlig, and P. Gasser, On the Interfacial Nanostructure of Brazed Diamond Grits, Scr. Mater., 2004, 50, p 1139-1143

    Article  Google Scholar 

  5. C.Y. Wang, Y.M. Zhou, F.L. Zhang, and Z.C. Xu, Interfacial Microstructure and Performance of Brazed Diamond Grits with Ni-Cr-P Alloy, J. Alloys Compd., 2009, 476, p 884-888

    Article  Google Scholar 

  6. J.C. Sung and M. Sung, The Brazing of Diamond, Int. J. Refract. Met. Hard Mater., 2009, 27, p 382-393

    Article  Google Scholar 

  7. S.M. Chen and S.T. Lin, Brazing Diamond Grits onto a Steel Substrate Using Copper Alloys as the Filler Metals, J. Mater. Eng. Perform., 1996, 5, p 761-766

    Article  Google Scholar 

  8. W.C. Li, C. Liang, and S.T. Lin, Epitaxial Interface of Nanocrystalline TiC Formed Between Cu-10Sn-15Ti Alloy and Diamond, Diam. Relat. Mater., 2002, 11, p 1366-1373

    Article  ADS  Google Scholar 

  9. S.F. Huang, H.L. Tsai, and S.T. Lin, Effects of Brazing Route and Brazing Alloy on the Interfacial Structure Between Diamond and Bonding Matrix, Mater. Chem. Phys., 2004, 84, p 251-258

    Article  Google Scholar 

  10. H.-R. Elsener, U.E. Klotz, F.A. Khalid, D. Piazza, and M. Kiser, The Role of Binder Content on Microstructure and Properties of a Cu-Base Active Brazing Filler Metal for Diamond and cBN, Adv. Eng. Mater., 2005, 7, p 375-380

    Article  Google Scholar 

  11. U.E. Klotz, C.L. Liu, F.A. Khalid, and H.R. Elsener, Influence of Brazing Parameters and Alloys Composition on Interface Morphology of Brazed Diamond, Mater. Sci. Eng. A, 2008, 495, p 265-270

    Article  Google Scholar 

  12. L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams, Academic Press, New York, 1970

    Google Scholar 

  13. B. Sundman, B. Jansson, and J.-O. Andersson, The Program for Optimization, CALPHAD, 1985, 9, p 153-190

    Article  Google Scholar 

  14. J.-O. Andersson, L. Höglund, B. Jönsson, and J. Ågren, Computer Simulation of Multicomponent Diffusional Transformations in Steel, Fundamentals and Applications of Ternary Diffusion, G.R. Prudy, Ed., Pergamon Press, New York, 1990, p 153-163

    Google Scholar 

  15. J.-O. Andersson and J. Ågren, Models for Numerical Treatment of Multicomponent Diffusion in Simple Phases, J. Appl. Phys., 1992, 72, p 1350-1355

    Article  ADS  Google Scholar 

  16. A. Borgenstam, A. Engström, L. Höglund, and J. Ågren, DICTRA, A Tool for Simulation of Diffusional Transformations in Alloys, J. Phase Equilb., 2000, 21, p 269-280

    Article  Google Scholar 

  17. Z.-K. Liu, L. Höglund, B. Jönsson, and J. Ågren, An Experimental and Theoretical Study of Cementite Dissolution In An Fe-Cr-C Alloy, Metall. Mater. Trans. A, 1991, 22, p 1745-1752

    Article  ADS  Google Scholar 

  18. A. Engström, L. Höglund, and J. Ågren, Computer Simulation of Diffusion in Multiphase System, Metall. Mater. Trans. A, 1994, 25A, p 1127-1134

    Article  ADS  Google Scholar 

  19. T. Helander, J.-O. Nilsson, and J. Ågren, An Experimental and Theoretical Investigation of Diffusion Across a Joint of Two Multicomponent Steels, ISIJ Int., 1997, 37, p 1139-1145

    Article  Google Scholar 

  20. B.-J. Lee, Numerical Simulation of Diffusional Reactions Between Multiphase Alloys With Different Matrix Phases, Scr. Mater., 1999, 40, p 573-579

    Article  Google Scholar 

  21. Y. Du and J.C. Schuster, An Effective Approach to Describe Growth of Binary Intermediate Phases With Narrow Ranges of Homogeneity, Metall. Mater. Trans. A, 2001, 32, p 2396-2400

    Article  Google Scholar 

  22. L. Zhang, Y. Du, Y. Ouyang, H. Xu, X.-G. Lu, Y. Liu, Y. Kong, and J. Wang, Atomic Mobilities, Diffusivities and Simulation of Diffusion Growth in the Co-Si System, Acta Mater., 2008, 56, p 3940-3950

    Article  Google Scholar 

  23. Y.J. Liu, L.J. Zhang, and Y. Du, Diffusion Mobilities in fcc Cu-Au and fcc Cu-Pt Alloys, J. Phase Equilib. Diffus., 2009, 30, p 136-145

    Article  Google Scholar 

  24. Y.J. Liu, D. Liang, Y. Du, L.J. Zhang, and D. Yu, Mobilities and Diffusivities in fcc Co-X (X = Ag, Au, Cu, Pd and Pt) Alloys, CALPHAD, 2009, 33, p 695-703

    Article  Google Scholar 

  25. J. Wang, H.S. Liu, L.B. Liu, and Z.P. Jin, Assessment of Diffusion Mobilities in fcc Cu-Ni Alloys, CALPHAD, 2008, 32, p 94-100

    Article  Google Scholar 

  26. J. Wang, C. Leinenbach, H.S. Liu, L.B. Liu, M. Roth, and Z.P. Jin, Re-assessment of Diffusion Mobilities in the Face-Centered Cubic Cu-Sn Alloys, CALPHAD, 2009, 33, p 704-710

    Article  Google Scholar 

  27. D.D. Liu, L.J. Zhang, Y. Du, H.H. Xu, S.H. Liu, and L.B. Liu, Assessment of Atomic Mobilities of Al and Cu in fcc Al-Cu Alloys, CALPHAD, 2009, 33, p 761-768

    Article  Google Scholar 

  28. C.A. Mackliet, Diffusion of Iron, Cobalt and Nickel in Single Crystals of Pure Copper, Phys. Rev., 1958, 109, p 1964-1970

    Article  ADS  Google Scholar 

  29. J.G. Mullen, Isotope Effect in Intermetallic Diffusion, Phys. Rev., 1961, 121, p 1649-1658

    Article  ADS  Google Scholar 

  30. G. Barreu, G. Brunel, and G. Cizeron, Détermination des coefficients d’hétérodiffusion à dilution in finie du fer et du chrome dans le cuiure pur, C. R. Acad. Sci. Paris C, 1971, 272, p 618-621

    Google Scholar 

  31. J. Bernardini and J. Cabane, Dislocation Effect on Diffusion Kinetics of Iron, Cobalt and Ruthenium in Copper and Silver Single Crystals, Acta Metall., 1973, 21, p 1561-1569

    Article  Google Scholar 

  32. S.K. Sen, M.B. Dutt, and A.K. Barua, The Diffusion of Iron in Copper and of Nickel in Silver, Phys. Stat. Sol. (a), 1978, 45, p 657-663

    Article  ADS  Google Scholar 

  33. G. Salje and M. Feller-Kniepmeier, The Diffusion and Solubility of Iron in Copper, J. Appl. Phys., 1978, 49, p 229-232

    Article  ADS  Google Scholar 

  34. A. Almazouzi, M.P. Macht, V. Naundorf, and G. Neumann, Diffusion of Iron and Nickel in Single-Crystalline Copper, Phys. Rev. B, 1996, 54, p 857-863

    Article  ADS  Google Scholar 

  35. Y. Tomono and A. Ikushima, Diffusion of Iron in Single Crystals of Cooper, J. Phys. Soc. Jpn., 1958, 13, p 762-763

    Article  ADS  Google Scholar 

  36. G.R. Speich, J.A. Gula, and R.M. Fisher, Diffusivity and Solubility Limit of Copper in Alpha and Gamma Iron, The Electron Microprobe, T.D. MacKinley, K.F.J. Heinrich, and D.B. Wittry, Eds., Wiley, New York, 1966, p 525-542

    Google Scholar 

  37. S.J. Rothman, N.L. Peterson, C.M. Walter, and L.J. Nowicki, The Diffusion of Copper in Iron, J. Appl. Phys., 1968, 39, p 5041-5044

    Article  ADS  Google Scholar 

  38. G. Salje and M. Feller-Kniepmeier, The Diffusion and Solubility of Copper in Iron, J. Appl. Phys., 1977, 48, p 1833-1839

    Article  ADS  Google Scholar 

  39. K. Majima and H. Mitani, Lattice Grain Boundary Diffusion of Copper in γ-Iron, Trans. Jpn. Inst. Met., 1978, 19, p 663-668

    Google Scholar 

  40. O. Taguchi, M. Hagiwara, Y. Yamazaki, and Y. Iijima, Impurity Diffusion Al and Cu in γ-Fe, Defect Diffus. Forum, 2001, 194-199, p 91-96

    Article  Google Scholar 

  41. J.L. Bocquet, Effect of Iron on Copper Self-Diffusion, Acta Metall., 1972, 20, p 1347-1351

    Article  Google Scholar 

  42. S. Tsuji and K. Yamanaka, Interdiffusion Coefficients and Moving Rates of Phase Interfaces for Reaction Diffusion in the Cu-Fe System, J. Jpn. Inst. Met., 1974, 38, p 415-421

    Google Scholar 

  43. Y. Iijima, K. Hoshino, M. Kikuchi, and K. Hirano, Diffusion of Titanium in Copper, Metall. Mater. Trans. A, 1977, 8, p 997-1001

    Article  ADS  Google Scholar 

  44. B. Jönsson, Ferromagnetic Ordering and Diffusion of Carbon and Nitrogen in bcc Cr-Fe-Ni Alloys, Z. Metallkd., 1994, 85, p 498-501

    Google Scholar 

  45. B. Jönsson, Assessment of the Mobility of Carbon in fcc C-Cr-Fe-Ni Alloys, Z. Metallkd., 1994, 85, p 502-509

    Google Scholar 

  46. B. Jönsson, On Ferromagnetic Ordering and Lattice Diffusion—A Simple Model, Z. Metallkd., 1992, 83, p 349-355

    Google Scholar 

  47. B. Jönsson, Assessment of the Mobilities of Cr, Fe and Ni in Binary fcc Cr-Fe and Cr-Ni Alloys, Scand. J. Metall., 1995, 24, p 21-27

    Google Scholar 

  48. O. Redlich and A. Kister, Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, Ind. Eng. Chem., 1948, 40, p 345-348

    Article  Google Scholar 

  49. L.S. Darken, Diffusion, Mobility and Their Interrelation through Free Energy in Binary Metallic Systems, Trans. AIME, 1948, 175, p 184-194

    Google Scholar 

  50. Q. Chen and Z.P. Jin, The Fe-Cu System: A Thermodynamic Evaluation, Metall. Mater. Trans. A, 1995, 26, p 417-426

    Article  Google Scholar 

  51. K. Kumar, I. Ansara, P. Wollants, and L. Delaey, Thermodynamic Optimisation of the Cu-Ti System, Z. Metallkd., 1996, 87, p 666-672

    Google Scholar 

  52. G. Ghosh, Dissolution and Interfacial Reactions of Thin-Film Ti/Ni/Ag Metallizations in Solder Joints, Acta Mater., 2001, 49, p 2609-2624

    Article  Google Scholar 

  53. N. Matan, H.M.A. Winand, P. Carter, M. Karunaratne, P.D. Bogdanoff, and R.C. Reed, A Coupled Thermodynamic/Kinetic Model for Diffusional Processes in Superalloys, Acta Mater., 1998, 46, p 4587-4600

    Article  Google Scholar 

  54. C.E. Campbell, W.J. Boettinger, and U.R. Kattner, Development of a Diffusion Mobility Database for Ni-Base Superalloys, Acta Mater., 2002, 50, p 775-792

    Article  Google Scholar 

  55. J. Wang, C. Leinenbach, H.S. Liu, L.B. Liu, M. Roth, and Z.P. Jin, Diffusion and Atomic Mobilities in fcc Ni-Sn Alloys, J. Phase Equilib. Diffus., 2010, 31, p 28-33

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the Sino Swiss Science and Technology Cooperation (SSSTC) within the project No. IP08-092009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Leinenbach, C., Liu, L.B. et al. Assessment of the Atomic Mobilities in fcc Cu-Fe and Cu-Ti Alloys. J. Phase Equilib. Diffus. 32, 30–38 (2011). https://doi.org/10.1007/s11669-010-9819-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-010-9819-0

Keywords

Navigation