Skip to main content
Log in

Cycling Performance of a Columnar-Structured Complex Perovskite in a Temperature Gradient Test

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

To increase the efficiency of turbines for the power generation and the aircraft industry, advanced thermal barrier coatings (TBCs) are required. They need to be long-term stable at temperatures higher than 1200 °C. Nowadays, yttria partially stabilized zirconia (YSZ) is applied as standard TBC material. But its long-term application at temperatures higher than 1200 °C leads to detrimental phase changes and sintering effects. Therefore, new materials have to be investigated, for example, complex perovskites. They provide high melting points, high thermal expansion coefficients and thermal conductivities of approx. 2.0 W/(m K). In this work, the complex perovskite La(Al1/4Mg1/2Ta1/4)O3 (LAMT) was investigated. It was deposited by the suspension plasma spraying (SPS) process, resulting in a columnar microstructure of the coating. The coatings were tested in thermal cycling gradient tests and they show excellent results, even though some phase decomposition was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Stöver and C. Funke, Directions of the Development of Thermal Barrier Coatings in Energy Applications, J. Mater. Process. Technol., 1999, 92-93, p 195-202

    Article  Google Scholar 

  2. R. Vaßen, F. Tietz, G. Kerkhoff, and D. Stöver, New Materials for Advanced Thermal Barrier Coatings, Materials for Advanced Power Engineering 1998 - Proceedings of the 6 th Liège Conference Part III, J. Lecomte-Beckers, F. Schuber, and P. J. Ennis Eds., 1998 (Liège, Belgium), Forschungszentrum Jülich GmbH, Jülich, Germany, 1998, p 1627-1635

  3. D.R. Clarke and S.R. Phillpot, Thermal Barrier Coating Materials, Mater. Today, 2005, 8(6), p 22-29

    Article  Google Scholar 

  4. R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, and D. Stöver, Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205(4), p 938-942

    Article  Google Scholar 

  5. G. Mauer, M.O. Jarligo, D.E. Mack, and R. Vaßen, Plasma-Sprayed Thermal Barrier Coatings: New Materials, Processing Issues, and Solutions, J. Therm. Spray Technol., 2013, 22(5), p 646-658

    Article  Google Scholar 

  6. G. Mauer, N. Schlegel, A. Guignard, M.O. Jarligo, S. Rezanka, A. Hospach, and R. Vaßen, Plasma Spraying of Ceramics with Particular Difficulties in Processing, J. Therm. Spray Technol., 2015, 24(1-2), p 30-37

    Google Scholar 

  7. O. Ruff and M. Konschak, Arbeiten im Gebiet hoher Temperaturen, Z. f. Elektroch., 1926, 32(11), p 515-525 (in German)

    Google Scholar 

  8. G.V. Samsonov, The Oxide Handbook, IFI/Plenum, London, UK, 1973

    Book  Google Scholar 

  9. N.S. Jacobson, Thermodynamic Properties of Some Metal Oxide-Zirconia Systems, NASA-TM-102351, 1989, p 1-62

  10. Ltd. Optotec Materials Co., Tantal-Oxid, http://de.made-in-china.com/co_optotecomc/product_Tantalum-Oxide_hnnghuisg.html [Access-Date: 14/10/2014]

  11. M.O. Jarligo, D.E. Mack, R. Vaßen, and D. Stöver, Application of Plasma-Sprayed Complex Perovskites as Thermal Barrier Coatings, J. Therm. Spray Technol., 2009, 18(2), p 187-193

    Article  Google Scholar 

  12. T. Maekawa, K. Kurosaki, and S. Yamanaka, Thermal and Mechanical Properties of Perovskite-Type Barium Hafnate, J. Alloys Compd., 2006, 407(1-2), p 44-48

    Article  Google Scholar 

  13. D. Stöver, G. Pracht, H. Lehmann, M. Dietrich, J.E. Döring, and R. Vaßen, New Material Concepts for the Next Generation of Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray. Technol., 2004, 13(1), p 76-83

    Article  Google Scholar 

  14. N.P. Bansal, D. Zhu, and M. Eslamloo-Grami, Effects of Doping on Thermal Conductivity of Pyrochlore Oxides for Advanced Thermal Barrier Coatings, Mater. Sci. Eng. A, 2007, 459(1-2), p 192-195

    Article  Google Scholar 

  15. R. Vaßen, F. Träger, and D. Stöver, New Thermal Barrier Coatings Based on Pyrochlore/YSZ Double-Layer Systems, Int. J. Appl. Ceram. Technol., 2004, 1(4), p 351-361

    Article  Google Scholar 

  16. A. Guignard, G. Mauer, R. Vaßen, and D. Stöver, Deposition and Characteristics of Submicrometer-Structured Thermal Barrier Coatings by Suspension Plasma Spraying, J. Therm. Spray Technol., 2012, 21(3-4), p 416-424

    Article  Google Scholar 

  17. N. Schlegel, S. Ebert, G. Mauer, and R. Vaßen, Columnar-Structured Mg-Al-Spinel Thermal Barrier Coatings (TBCs) by Suspension Plasma Spraying (SPS), J. Therm. Spray Technol., 2015, 24(1-2), p 144-151

    Google Scholar 

  18. F. Träger, R. Vaßen, K.H. Rauwald, and D. Stöver, Thermal Cycling Setup for Testing Thermal Barrier Coatings, Adv. Eng. Mater., 2003, 5(6), p 429-432

    Article  Google Scholar 

  19. M.J. Donachie and S.J. Donachie, Superalloys: A Technical Guide, ASM International, Novelty, OH, 2002

    Google Scholar 

  20. S. Ebert, R. Mücke, D.E. Mack, R. Vaßen, D. Stöver, T. Wobst, and S. Gebhard, Failure Mechanisms of Magnesia Alumina Spinel Abradable Coatings Under Thermal Cyclic Loading, J. Eur. Ceram. Soc., 2013, 33(15-16), p 3335-3343

    Article  Google Scholar 

  21. S.M. Ebert, Ph.D. Thesis (Ruhr-Universität Bochum: Fakultät für Maschinenbau, Bochum, Germany): Versagensverhalten plasmagespritzter Mg-Al-Spinell-Schichten unter Thermozyklierung, Schriften des Forschungszentrums Jülich: Energie & Umwelt/Energy & Environment, 166, Forschungszentrum Jülich GmbH, Jülich, Germany, 2013, in German

  22. R. Vaßen, S. Giesen, and D. Stöver, Lifetime of Plasma-Sprayed Thermal Barrier Coatings: Comparison of Numerical and Experimental Results, J. Therm. Spray Technol., 2009, 18(5-6), p 835-845

    Article  Google Scholar 

  23. N.S. Afonskii and M. Neiman, Investigation of the Phase Composition of the La2O3-Ta2O5 System, Inorg. Mater., 1967, 3(7), p 1132-1134

    Google Scholar 

  24. H.P. Rooksby and E.A.D. White, Rare-Earth Niobates and Tantalates of Defect Fluorite-Type and Weberite-Type Structures, J. Am. Ceram. Soc., 1964, 47(2), p 94-96

    Article  Google Scholar 

  25. J.G. Allpress and H.J. Rossell, Fluorite-Related Phases Ln3MO7, Ln = Rare-Earth, Y, or Sc, M = Nb, Sb, or Ta. 1. Crystal-Chemistry, J. Solid State Chem., 1979, 27(1), p 105-114

    Article  Google Scholar 

  26. M. Wakeshima, H. Nishimine, and Y. Hinatsu, Crystal Structures and Magnetic Properties of Rare Earth Tantalates RE3TaO7 (RE = Rare Earths), J. Phys.: Condens. Matter., 2004, 16(23), p 4103-4120

    Google Scholar 

  27. M.O. Jarligo, D.E. Mack, G. Mauer, R. Vaßen, and D. Stöver, Atmospheric Plasma Spraying of High Melting Temperature Complex Perovskites for TBC Application, J. Therm. Spray Technol., 2010, 19(1-2), p 303-310

    Article  Google Scholar 

  28. C. Nordhorn, R. Mücke, D.E. Mack, and R. Vaßen, Probabilistic Lifetime Model for Atmospherically Plasma Sprayed Thermal Barrier Coating Systems, Mech. Mater. (submitted)

  29. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296, p 280-284

    Article  Google Scholar 

  30. C. Nordhorn, R. Mücke, K.A. Unocic, M.J. Lance, B.A. Pint, and R. Vaßen, Effects of Thermal Cycling Parameters on Residual Stresses in Alumina Scales of CoNiCrAlY and NiCoCrAlY Bond Coats, Surf. Coat. Technol., 2014, 258, p 608-614

    Article  Google Scholar 

  31. F. Träger, M. Ahrens, R. Vaßen, and D. Stöver, A Life Time Model for Ceramic Thermal Barrier Coatings, Mater. Sci. Eng. A., 2003, 358(1-2), p 255-265

    Article  Google Scholar 

  32. A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Prog. Mater. Sci., 2001, 46(5), p 505-553

    Article  Google Scholar 

  33. E.P. Busso, H.E. Evans, Z.Q. Qian, and M.P. Taylor, Effects of Breakaway Oxidation on Local Stresses in Thermal Barrier Coatings, Acta Mater., 2010, 58(4), p 1242-1251

    Article  Google Scholar 

  34. D. Kim, I. Shin, J. Koo, S. Kim, D. Seo, J. Kim, and C. Seok, Quantitative Analysis on the Depletion Rate of β-NiAl Phases in MCrAlY Coating, J. Mech. Sci. Technol., 2014, 28(2), p 513-519

    Article  Google Scholar 

  35. A. Nakatsuka, O. Ohtaka, H. Arima, N.A. Noriaki, and T. Mizota, Cubic Phase of Single-Crystal LaAlO3 Perovskite Synthesized at 4.5 GPa and 1273 K, Acta Crystallogr. Sect. E: Struct. Rep. Online, 2005, 61, p I148-I150

    Article  Google Scholar 

  36. P. Wu and A.D. Pelton, Coupled Thermodynamic-Phase Diagram Assessment of the Rare Earth Oxide-Aluminium Oxide Binary Systems, J. Alloys Compd., 1992, 179(1-2), p 259-287

    Article  Google Scholar 

Download references

Acknowledgment

The authors kindly thank Karl-Heinz Rauwald and Frank Vondahlen for their support in the manufacturing of the samples, Michaela Andreas for the preparation of the powder and particle size measurement, Hiltrud Moitroux for the photographs and Nicole Adels for the thermal cycling tests (all Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung - Werkstoffsynthese und Herstellungsverfahren (IEK-1)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Schlegel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlegel, N., Sebold, D., Sohn, Y.J. et al. Cycling Performance of a Columnar-Structured Complex Perovskite in a Temperature Gradient Test. J Therm Spray Tech 24, 1205–1212 (2015). https://doi.org/10.1007/s11666-015-0254-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0254-y

Keywords

Navigation