Skip to main content
Log in

Synthesis and Characterization of Potentiostatically Electrodeposited Tungsten Oxide Thin Films for Smart Window Application

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Tungsten oxide (WO3) thin films have been synthesized using electrodeposition in potentiostatic mode and the effect of different deposition potentials on their structural, morphological, optical, and electrochromic (EC) properties investigated. The deposition potential versus saturated calomel electrode (SCE) was varied from −0.35 V to −0.50 V in steps of −0.05 V for 20 min each. The electrodeposited WO3 thin films were characterized using x-ray diffraction analysis, micro-Raman spectroscopy, field-emission scanning electron microscopy, and ultraviolet–visible (UV–Vis) spectrophotometry, revealing amorphous nature with nanograins having average size from 40 nm to 60 nm. The EC performance of the WO3 thin films exhibited response times of 1.35 s for bleaching (t b) and 3.1 s for coloration (t c) with excellent reversibility of 64.36%. The highest coloration efficiency of the electrodeposited WO3 thin films was found to be 87.95 cm2/C. The electrochemical reversibility and stability of the WO3 thin films obtained in this study make them promising for use in smart window applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.G. Granqvist, Thin Solid Films 564, 1 (2014).

    Article  Google Scholar 

  2. Y.M. Hunge, M.A. Mahadik, V.S. Mohite, S.S. Kumbhar, N.G. Deshpande, K.Y. Rajpure, A.V. Moholkar, P.S. Patil, and C.H. Bhosale, J. Mater. Sci.: Mater. Electron. 27, 1629 (2016).

    Google Scholar 

  3. N. Lu, X. Gao, C. Yang, F. Xiao, J. Wang, and X. Su, Sens. Actuators B Chem. 223, 743 (2016).

    Article  Google Scholar 

  4. K. Senthil and K. Yong, Nanotechnology 18, 395604 (2007).

    Article  Google Scholar 

  5. M.J. Devries, D.W. Thompson, J.S. Hale, M.J. Devries, C. Trimble, T.E. Tiwald, D.W. Thompson, and J.S. Hale, J. Vac. Sci. Technol. 17, 2906 (1999).

    Article  Google Scholar 

  6. R.G. Gordon, S. Barry, J.T. Barton, and R.N.R. Broomhall-Dillard, Thin Solid Films 392, 231 (2001).

    Article  Google Scholar 

  7. P.S. Patil, P.R. Patil, and E.A. Ennaoui, Thin Solid Films 370, 38 (2000).

    Article  Google Scholar 

  8. M.Z. Najdoski and T. Todorovski, Mater. Chem. Phys. 104, 483 (2007).

    Article  Google Scholar 

  9. A.J. More, R.S. Patil, D.S. Dalavi, S.S. Mali, C.K. Hong, M.G. Gang, J.H. Kim, and P.S. Patil, Mater. Lett. 134, 298 (2014).

    Article  Google Scholar 

  10. P.K. Shen and A.C.C. Tseung, J. Mater. Chem. 2, 1141 (1992).

    Article  Google Scholar 

  11. P.M.S. Monk and S.L. Chester, Electrochim. Acta 38, 1521 (1993).

    Article  Google Scholar 

  12. K. Yamanaka, H. Oakamoto, H. Kidou, and T. Kudo, Jpn. J. Appl. Phys. 25, 1420 (1986).

    Article  Google Scholar 

  13. K. Yamanaka, Jpn. J. Appl. Phys. 26, 1884 (1987).

    Article  Google Scholar 

  14. T. Nanba, S. Takano, I. Yasui, and T. Kudo, J. Solid State Chem. 90, 47 (1991).

    Article  Google Scholar 

  15. J.N. Yao, P. Chen, and A. Fujishima, J. Electroanal. Chem. 406, 223 (1996).

    Article  Google Scholar 

  16. E.A. Meulenkamp, J. Electrochem. Soc. 144, 1664 (1997).

    Article  Google Scholar 

  17. J.H. Choy, Y.I. Kim, J.B. Yoon, and S.H. Choy, J. Mater. Chem. 11, 1506 (2001).

    Article  Google Scholar 

  18. B. Munro, S. Krämer, P. Zapp, and H. Krug, J. Sol Gel. Sci. Technol. 13, 673 (1998).

    Article  Google Scholar 

  19. N. Sharma, M. Deepa, P. Varshney, and S.A. Agnihotry, J. Sol Gel. Sci. Technol. 18, 167 (2000).

    Article  Google Scholar 

  20. S.H. Baeck, T. Jaramillo, G.D. Stucky, and E.W. McFarland, Nano Lett. 2, 831 (2002).

    Article  Google Scholar 

  21. B. Yang, H. Li, M. Blackford, and V. Luca, Curr. Appl. Phys. 6, 436 (2006).

    Article  Google Scholar 

  22. B.L. Crowder and M.J. Sienko, Inorg. Chem. 4, 73 (1965).

    Article  Google Scholar 

  23. M. Deepa, A.K. Srivastava, S. Singh, and S. Agnihotry, J. Mater. Res. 19, 2576 (2004).

    Article  Google Scholar 

  24. S.H. Lee, H.M. Cheong, C.E. Tracy, A. Mascarenhas, D.K. Benson, and S.K. Deb, Electrochim. Acta 44, 3111 (1999).

    Article  Google Scholar 

  25. H. Habazaki, Y. Hayashi, and H. Konno, Electrochim. Acta 47, 4181 (2002).

    Article  Google Scholar 

  26. B. Palys, M.I. Borzenko, G.A. Tsirlina, K. Jackowska, E.V. Timofeeva, and O.A. Petrii, Electrochim. Acta 50, 1693 (2005).

    Article  Google Scholar 

  27. A. Diéguez, A. Romano-Rodríguez, A. Vilà, and J.R. Morante, J. Appl. Phys. 90, 1550 (2001).

    Article  Google Scholar 

  28. P.S. Peercy and B. Morosin, Phys. Rev. B 7, 2779 (1973).

    Article  Google Scholar 

  29. R.L. Frost, J. Cejka, G.A. Ayoko, and M.J. Dickfos, J. Raman Spectrosc. 38, 1609 (2007).

    Article  Google Scholar 

  30. C.R. Deltcheff, M. Fournier, R. Franck, and R. Thouvenot, Inorg. Chem. 22, 207 (1983).

    Article  Google Scholar 

  31. M. Deepa, A.K. Srivastava, S. Lauterbach, Govind, S.M. Shivaprasad, and K.N. Sood, Acta Mater. 55, 6095 (2007).

    Article  Google Scholar 

  32. S.R. Bathe and P.S. Patil, Sol. Energy Mater. Sol. Cells 91, 1097 (2007).

    Article  Google Scholar 

  33. L. Liu, M. Layani, S. Yellinek, A. Kamyshny, H. Ling, P.S. Lee, S. Magdassi, and D. Mandler, J. Mater. Chem. A 2, 16224 (2014).

    Article  Google Scholar 

  34. F. Zheng, W. Man, M. Guo, M. Zhang, and Q. Zhen, CrystEngComm 17, 5440 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the converging research center program funded by the Ministry of Science, ICT, and Future Planning (2013K000407) and Human Resource Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korea Government Ministry of Knowledge Economy (No. 20124010203180). The authors would like to acknowledge DST-FIST New Delhi and Physics Instrumentation Facility Centre (PIFC), Dept. of Phys, SUK for characterizations. The authors are very grateful to Dr. K. K. K. Sharma, SNST, SUK for help at the time of manuscript revision.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. H. Kim or P. S. Patil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

More, A.J., Patil, R.S., Dalavi, D.S. et al. Synthesis and Characterization of Potentiostatically Electrodeposited Tungsten Oxide Thin Films for Smart Window Application. J. Electron. Mater. 46, 974–981 (2017). https://doi.org/10.1007/s11664-016-4973-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4973-8

Keywords

Navigation