Skip to main content
Log in

Electromigration Damage Characterization in Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce Solder Joints by Three-Dimensional X-ray Tomography and Scanning Electron Microscopy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Cerium (Ce)-containing Sn-3.9Ag-0.7Cu alloy exhibits desirable attributes of microstructural refinement, increased ductility, and mechanical shock performance, while possessing better oxidation resistance than other rare-earth-containing solders. In addition to the beneficial mechanical properties, it is imperative to study the reliability performance of novel solder alloys in the form of electromigration experiments, in comparison with Sn-3.9Ag-0.7Cu. In this study, electromigration tests were conducted on solder joints at elevated temperature with a constant current using a V-groove testing methodology. The microstructural change of solder joints during electromigration was investigated by scanning electron microscopy, and the void growth was monitored utilizing the three-dimensional (3D) x-ray microtomography imaging technique. The current density inside the solder matrix was determined by 3D microstructure-based finite-element modeling. Finally, the product of diffusivity and effective charge number of solder joints during electromigration was calculated from both marker displacement and 3D void growth. It was found that electromigration-induced Cu diffusion in Sn-3.9Ag-0.7Cu-0.5Ce alloy was greatly accelerated, and void formation at the cathode side was retarded as a result of finer microstructure and existence of CeSn3 intermetallic particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Chawla, Int. Mater. Rev. 54, 368 (2009).

    Article  Google Scholar 

  2. N.C. Lee, D. Lu and C.P. Wong, Mater. Adv. Packag. 181 (2009).

  3. I.E. Anderson, J. Mater. Sci. Mater. Electron. 18, 55 (2007).

    Article  Google Scholar 

  4. M.A. Dudek and N. Chawla, Metall. Mater. Trans. A 41, 610 (2010).

    Article  Google Scholar 

  5. M.A. Dudek, R.S. Sidhu, and N. Chawla, JOM 58, 57 (2006).

    Article  Google Scholar 

  6. M.A. Dudek, R.S. Sidhu, N. Chawla, and M. Renavikar, J. Electron. Mater. 31, 1122 (2002).

    Article  Google Scholar 

  7. M.A. Dudek and N. Chawla, J. Electron. Mater. 38, 210 (2009).

    Article  Google Scholar 

  8. H.X. Xie, N. Chawla, and K. Mirpuri, J. Electron. Mater. 41, 3249 (2012).

    Article  Google Scholar 

  9. K.N. Tu, J. Appl. Phys. 94, 5451 (2003).

    Article  Google Scholar 

  10. T.Y. Lee, K.N. Tu, and D.R. Frear, J. Appl. Phys. 90, 4502 (2001).

    Article  Google Scholar 

  11. H. Gan, W.J. Choi, G. Xu, and K.N. Tu, JOM 54, 34 (2002).

    Article  Google Scholar 

  12. S. Gee, N. Kelkar, J. Huang and K.N. Tu, Proc. ASME IPACK, 1 (2005).

  13. Y.-S. Lai, K.-M. Chen, C.-L. Kao, C.-W. Lee, and Y.-T. Chiu, Microelectron. Reliab. 47, 1273 (2007).

    Article  Google Scholar 

  14. H.-J. Lin, J.-S. Lin, and T.-H. Chuang, J. Alloys Compd. 487, 506 (2009).

    Article  Google Scholar 

  15. H.-J. Lin and T.-H. Chuang, Mater. Lett. 64, 506 (2010).

    Article  Google Scholar 

  16. H. He, G. Xu, and F. Guo, J. Mater. Sci. 44, 2089 (2009).

    Article  Google Scholar 

  17. K.E. Yazzie, J.J. Williams, N.C. Phillips, F. De Carlo, and N. Chawla, Mater. Charact. 70, 33 (2012).

    Article  Google Scholar 

  18. L. Jiang, N. Chawla, M. Pacheco, and V. Noveski, Mater. Charact. 62, 970 (2011).

    Article  Google Scholar 

  19. M.A. Dudek, L. Hunter, S. Kranz, J.J. Williams, S.H. Lau, and N. Chawla, Mater. Charact. 61, 433 (2010).

    Article  Google Scholar 

  20. E. Padilla, V. Jakkali, L. Jiang, and N. Chawla, Acta Mater. 60, 4017 (2012).

    Article  Google Scholar 

  21. T. Tian, K. Chen, A.A. MacDowell, D. Parkinson, Y.-S. Lai, and K.N. Tu, Scripta Mater. 65, 646 (2011).

    Article  Google Scholar 

  22. F. Ren, J.W. Nah, J.O. Suh, K.N. Tu, B.S. Xiong, L.H. Xu and J.H.L. Pang, Materials Research Symposium Proceedings, 863 (Warrendale, PA: B10.2, 2005).

  23. M. Lu, D.-Y. Shih, P. Lauro, C. Goldsmith, and D.W. Henderson, Appl. Phys. Lett. 92, 211909 (2008).

    Article  Google Scholar 

  24. Z. Chen, Y. Shi, Z. Xia, and Y. Yan, J. Electron. Mater. 32, 235 (2003).

    Article  Google Scholar 

  25. J.H. Ke, T.L. Yang, Y.S. Lai, and C.R. Kao, Acta Mater. 59, 2462 (2011).

    Article  Google Scholar 

  26. A.T. Wu, K.N. Tu, J.R. Lloyd, N. Tamura, B.C. Valek, and C.R. Kao, Appl. Phys. Lett. 85, 2490 (2004).

    Article  Google Scholar 

  27. A.T. Wu, A.M. Gusak, K.N. Tu, and C.R. Kao, Appl. Phys. Lett. 86, 241902 (2005).

    Article  Google Scholar 

  28. K. Lee, K.S. Kim, and K. Suganuma, J. Mater. Res. 26, 2624 (2011).

    Article  Google Scholar 

  29. L. Xu, J.-K. Han, J.J. Liang, K.N. Tu, and Y.-S. Lai, Appl. Phys. Lett. 92, 262104 (2008).

    Article  Google Scholar 

  30. Y.-M. Hung and C.-M. Chen, J. Electron. Mater. 37, 887 (2008).

    Article  Google Scholar 

  31. H.X. Xie, N. Chawla, and Y.-L. Shen, Microelectron. Reliab. 51, 1142 (2011).

    Article  Google Scholar 

  32. J.-W. Nah, J.O. Suh, K.N. Tu, S.W. Yoon, V.S. Rao, V. Kripesh, and F. Hua, J. Appl. Phys. 100, 123513 (2006).

    Article  Google Scholar 

  33. M. Yunus, K. Srihari, J.M. Pitarresi, and A. Primavera, Microelectron. Reliab. 43, 2077 (2003).

    Article  Google Scholar 

  34. J.D.J. Ingle, Spectrochemical Analysis (New Jersey: Prentice Hall, 1988).

    Google Scholar 

  35. W.A. Barrett and E.N. Mortensen, Med. Image Anal. 1, 331 (1997).

    Article  Google Scholar 

  36. E.C.C. Yeh, W.J. Choi, K.N. Tu, P. Elenius, and H. Balkan, Appl. Phys. Lett. 80, 580 (2002).

    Article  Google Scholar 

  37. S.W. Liang, Y.W. Chang, T.L. Shao, C. Chen, and K.N. Tu, Appl. Phys. Lett. 89, 022117 (2006).

    Article  Google Scholar 

  38. M. Lu, D.-Y, Shih, C. Goldsmith and T. Wassick, Reliability Physics Symposium, 2009 IEEE International, 149 (2009).

  39. L. Xu, J.H.L. Pang, and K.N. Tu, Appl. Phys. Lett. 89, 221909 (2006).

    Article  Google Scholar 

  40. Q.T. Huynh, C.Y. Liu, C. Chen, and K.N. Tu, Appl. Phys. Lett. 89, 4332 (2001).

    Google Scholar 

  41. H.B. Huntington and A.R. Grone, J. Phys. Chem. Solids 20, 76 (1961).

    Article  Google Scholar 

  42. Y.-C. Hsu, C.-K. Chou, P.C. Liu, C. Chen, D.J. Yao, T. Chou, and K.N. Tu, J. Appl. Phys. 98, 033523 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chawla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, H., Friedman, D., Mirpuri, K. et al. Electromigration Damage Characterization in Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce Solder Joints by Three-Dimensional X-ray Tomography and Scanning Electron Microscopy. J. Electron. Mater. 43, 33–42 (2014). https://doi.org/10.1007/s11664-013-2667-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2667-z

Keywords

Navigation