Skip to main content
Log in

Effect of Intermetallic Content on Shear Deformation of Thin Sn-3.0Ag-0.5Cu Solder Micro-joints Between Copper Substrates

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In 3D electronic packages, stacked dies are connected vertically using through-silicon vias and solder micro-bumps, which are typically between 1 μm and 50 μm thick. Solder micro-joints undergo significant shear deformation due to various loading conditions, which can occur during usage of microelectronic devices, such as thermal cycling, mechanical bending, and drop impact. A limited amount of work has been done in shear deformation and failure mechanism of these joints. To explore this, 25-μm-thick joints of SAC305 solder between two Cu substrates were tested, containing three different Cu6Sn5-to-Cu3Sn ratios, in shear at strain rates from 1 s−1 to 100 s−1. The joint shear strength is correlated with observed failure mechanisms such as Sn, Cu6Sn5, Cu3Sn and Cu6Sn5/Cu3Sn interface failure. The growth kinetics of intermetallic compounds (IMCs) in thin Sn-3Ag-0.5Cu joints attached to Cu substrates have been analyzed, and empirical kinetic laws for the growth of Cu6Sn5 and Cu3Sn in thin joints are reported. By combining the shear deformation results, we infer that increased IMC content due to heat treatment deteriorates the mechanical properties of the joint due to the presence of disconnected incipient micro-cracks. Deformation and damage are controlled by the intermetallics, and not the strain-rate sensitive solder for the aged samples. Both Cu6Sn5 and the Cu6Sn5/Cu3Sn interface fracture are the dominant mechanisms with increasing aging under the shear deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Talebanpour, Z. Huang, Z. Chen, and I. Dutta, J. Electron. Mater. 45, 57 (2016).

    Article  Google Scholar 

  2. Z. Huang, P. Kumar, I. Dutta, R. Sidhu, M. Renavikar, and R. Mahajan, J. Electron. Mater. 43, 4485 (2014).

    Article  Google Scholar 

  3. Z. Huang, P. Kumar, I. Dutta, J.H.L. Pang, and R. Sidhu, Eng. Fract. Mech. 131, 9 (2014).

    Article  Google Scholar 

  4. Z. Huang, P. Kumar, I. Dutta, J.H.L. Pang, R. Sidhu, M. Renavikar, and R. Mahajan, J. Electron. Mater. 41, 375 (2012).

    Article  Google Scholar 

  5. Z. Huang, P. Kumar, I. Dutta, R. Sidhu, M. Renavikar, and R. Mahajan, J. Electron. Mater. 43, 88 (2014).

    Article  Google Scholar 

  6. P. Kumar, Z. Huang, I. Dutta, R. Sidhu, M. Renavikar, and R. Mahajan, J. Electron. Mater. 41, 412 (2012).

    Article  Google Scholar 

  7. Z. Huang, P. Kumar, I. Dutta, R. Sidhu, M. Renavikar, and R. Mahajan, J. Electron. Mater. 43, 4485 (2014).

    Article  Google Scholar 

  8. Z. Chen, B. Talebanpour, Z. Huang, P. Kumar, and I. Dutta, in Proceedings of 15th IEEE Electronics Packaging Technology Conference (EPTC), pp. 534–537 (2013).

  9. H.K. Kim and K.N. Tu, Phys. Rev. B 53, 16027 (1996).

    Article  Google Scholar 

  10. S.K. Seo, S.K. Kang, M.G. Cho, et al., J. Electron. Mater. 38, 2461 (2009).

    Article  Google Scholar 

  11. A.U. Telang and T.R. Bieler, Scr. Mater. 52, 1027 (2005).

    Article  Google Scholar 

  12. M.H. Lu, D.Y. Shih, P. Lauro, and C. Goldsmith, Appl. Phys. Lett. 92, 21 (2008).

    Google Scholar 

  13. H. Lee, M. Chen, H. Jao, and T. Liao, Mater. Sci. Eng. A 358, 134 (2003).

    Article  Google Scholar 

  14. Y.C. Chan, A.C.K. So, and J.K.L. Lai, Mater. Sci. Eng. B 55, 5 (1998).

    Article  Google Scholar 

  15. C.K. Alex and Y.C. Chan, IEEE Trans. CPMT-B 19, 661 (1996).

    Google Scholar 

  16. P.L. Tu, Y.C. Chan, and J.K.L. Lai, IEEE Trans. CPMT-B 20, 87 (1997).

    Google Scholar 

  17. J.Y.H. Chia, B. Cotterell, F T.C. Chai, Mater. Sci. Eng. A 417, 259 (2006).

    Article  Google Scholar 

  18. W.H. Zhong, Y.C. Chan, and M.O. Alam, J. Alloys Compd. 414, 123 (2006).

    Article  Google Scholar 

  19. J.W. Yoon and S.B. Jung, J. Alloys Compd. 458, 200 (2008).

    Article  Google Scholar 

  20. J.W. Kim, D.G. Kim, and S.B. Jung, Thin Solid Films 504, 405 (2006).

    Article  Google Scholar 

  21. D.G. Kim, J.W. Kim, and S.S. Ha, J. Alloys Compd. 458, 253 (2008).

    Article  Google Scholar 

  22. A. Kar, M. Ghosh, and A.K. Ray, Mater. Sci. Eng. A 459, 69 (2007).

    Article  Google Scholar 

  23. H.T. Lee, M.H. Chen, and H.M. Jao, Mater. Sci. Eng. A 358, 134 (2003).

    Article  Google Scholar 

  24. K.J. Zeng, R. Stierman, and T.C. Chiu, et al., J. Appl. Phys. 97, 024508 (2005).

    Article  Google Scholar 

  25. S. Park, R. Dhakal, L. Lehman, et al., Acta Mater. 55, 3253 (2007).

    Article  Google Scholar 

  26. A.U. Telang, T.R. Bieler, A. Zamiri, et al., Acta Mater. 55, 2265 (2007).

    Article  Google Scholar 

  27. M.A. Matin, W.P. Vellinga, and M.G.D. Geers, Mater. Sci. Eng. A 445, 73 (2007).

    Article  Google Scholar 

  28. T.R. Bieler and A.U. Telang, J. Electron. Mater. 38, 2694 (2009).

    Article  Google Scholar 

  29. J. Liu, Liquid Phase Sintered Composite Solders for Next Generation Thermal Interface Applications, PhD Thesis, May 2013.

  30. P. Kumar, I. Dutta, V. Sarihan, D.R. Frear, and M. Renavikar, ITHERM.2008.4544331.

  31. X. Deng, R.S. Sidhu, P. Johnson, and N. Chawla, Metall. Mater. Trans. A 36A, 55 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Missile Defense Agency (HQ0147-15-C-6002). Partial support from the National Science Foundation (DMR-1309843) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar P..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajay Kumar, P., Dutta, I. Effect of Intermetallic Content on Shear Deformation of Thin Sn-3.0Ag-0.5Cu Solder Micro-joints Between Copper Substrates. J. Electron. Mater. 47, 5488–5497 (2018). https://doi.org/10.1007/s11664-018-6434-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6434-z

Keywords

Navigation