Skip to main content
Log in

A Kinetics Study on Electrical Resistivity Transition of In Situ Polymer Aging Sensors Based on Carbon-Black-Filled Epoxy Conductive Polymeric Composites (CPCs)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Sensors based on carbon-black-filled bisphenol A-type epoxy conductive polymeric composites (CPCs) have been prepared and applied to monitor thermal oxidation aging of polymeric materials. Thermogravimetric analysis (TGA) is applied to characterize weight loss of epoxy resin in the aging process. By using a mathematical model based on the Boltzmann equation, a relationship between the electrical resistivity of the sensors based on epoxy/carbon black composites and aging time is established, making it possible to monitor and estimate the aging status of polymeric components in situ based on a fast and convenient electrical resistance measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

p c :

Percolation threshold

C :

Relative weight of epoxy resin matrix

W :

Real-time weight of epoxy resin

W 0 :

Initial weight of epoxy resin

t :

Aging time

k :

Reaction constant

n :

Exponent in power equation for weight of epoxy resin

E a :

Activation energy in degradation of epoxy resin

T :

Aging temperature

R :

Gas constant

ρ :

Electrical resistivity of CPCs

ρ 0 :

Initial electrical resistivity of CPCs

ρ :

Electrical resistivity of CPCs with infinite aging time

x :

Weight ratio of carbon black

α :

Exponent in electrical resistance alteration around percolation in Liang’s theory13

t c :

Induction time, corresponding to aging time needed for a change of log ρ from log ρ 0 to \( \left(\log \rho_{0}+\log \rho_{\infty}\right)/2\)

Δt :

A constant in the Boltzmann equation

References

  1. A.I. Eatah, A.A. Ghani, and A.A. Hasham, Polym. Degrad. Stab. 23, 9 (1989).

    Article  CAS  Google Scholar 

  2. K.T. Gillen, M. Celina, and R.L. Clough, Radiat. Phys. Chem. 56, 429 (1999).

    Article  CAS  Google Scholar 

  3. L.R. Mason and A.B. Reynolds, J. Appl. Polym. Sci. 66, 1691 (1997).

    Article  CAS  Google Scholar 

  4. K. Watkins, S. Morris, C.P. Wong, S. Luo, and D.D. Masakowski, U.S. Pat. Pending

  5. Y.Y. Sun, S. Luo, K. Watkins, and C.P. Wong, Polym. Degrad. Stab. 86, 209 (2004).

    Article  CAS  Google Scholar 

  6. Y.Y. Sun, L. Fan, K. Watkins, J. Peak, and C.P. Wong, J. Appl. Polym. Sci. 93, 513 (2004).

    Article  CAS  Google Scholar 

  7. R. Zhang, W. Lin, K.-S. Moon, Q.Z. Liang, and C.P. Wong, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 25 (2011).

    Article  Google Scholar 

  8. N. Grassie, M.I. Guy, and N.H. Tennent, Polym. Degrad. Stab. 13, 11 (1985).

    Article  CAS  Google Scholar 

  9. J.S. Chen, C.K. Ober, M.D. Poliks, Y. Zhang, U. Wiesner, and C. Cohen, Polymer 45, 1939 (2004).

    Article  CAS  Google Scholar 

  10. Q. Liang, K.-S. Moon, H. Jiang, and C.P. Wong, IEEE Trans. Compon. Packag. Manuf. Techn. 2, 1571 (2012).

  11. Q. Liang, S.A. Hsie, and C.P. Wong, ChemPhysChem 13, 3700 (2012).

  12. Q. Liang, X. Yao, W. Wang, Y. Liu, and C.P. Wong, ACS Nano 5, 2392 (2011).

  13. P. Musto, G. Ragosta, P. Russo, and L. Mascia, Macromol. Chem. Phys. 202, 3445 (2001).

    Article  CAS  Google Scholar 

  14. A.R. Greenberg and I. Kamel, J. Polym. Sci. Pol. Chem. 15, 2137 (1977).

    Article  CAS  Google Scholar 

  15. N.T. Liang, Y. Shan, and S.Y. Wang, Phys. Rev. Lett. 37, 526 (1976).

    Article  Google Scholar 

  16. X.K. Yin and B.Z. Sheng, IEEE Trans. Reliab. 36, 150 (1987).

    Article  Google Scholar 

  17. D. Suryanarayana, R. Hsiao, T.P. Gall, and J.M. Mccreary, IEEE Trans. Compon. Hybr. Manuf. Techn. 14, 218 (1991).

    Article  Google Scholar 

  18. S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).

    Article  Google Scholar 

  19. L.F.E. Jacques, Prog. Polym. Sci. 25, 1337 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qizhen Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Q., Nyugen, M.T., Moon, KS. et al. A Kinetics Study on Electrical Resistivity Transition of In Situ Polymer Aging Sensors Based on Carbon-Black-Filled Epoxy Conductive Polymeric Composites (CPCs). J. Electron. Mater. 42, 1114–1121 (2013). https://doi.org/10.1007/s11664-013-2525-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2525-z

Keywords

Navigation