Skip to main content
Log in

Experimental and Theoretical Studies on the Viscosity–Structure Correlation for High Alumina-Silicate Melts

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Blast furnaces are encountering high Alumina (Al2O3 > 25 pct) in the final slag due to the charging of low-grade ores. To study the viscosity behavior of such high alumina slags, synthetic slags are prepared in the laboratory scale by maintaining a chemical composition of Al2O3 (25 to 30 wt pct) CaO/SiO2 ratio (0.8 to 1.6) and MgO (8 to 16 wt pct). A chemical thermodynamic software FactSage 7.0 is used to predict liquidus temperature and viscosity of the above slags. Experimental viscosity measurements are performed above the liquidus temperature in the range of 1748 K to 1848 K (1475 °C to 1575 °C). The viscosity values obtained from FactSage closely fit with the experimental values. The viscosity and the slag structure properties are intent by Fourier Transform Infrared (FTIR) and Raman spectroscopy. It is observed that increase in CaO/SiO2 ratio and MgO content in the slag depolymerizes the silicate structure. This leads to decrease in viscosity and activation energy (167 to 149 kJ/mol) of the slag. Also, an addition of Al2O3 content increases the viscosity of slag by polymerization of alumino-silicate structure and activation energy from 154 to 161 kJ/mol. It is witnessed that the activation energy values obtained from experiment closely fit with the Shankar model based on Arrhenius equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H. Kim, W.H. Kim, J. H. Park and D. J. Min, Steel Res Int., 2010, vol. 81, pp 261-64.

    Article  Google Scholar 

  2. D. Ghosh, V. A. Krishnamurthy and S. R. Sankaranarayanan, J. Min. Metall. Sect. B. 2010, 46:41-49.

    Article  Google Scholar 

  3. J. Muller and M. Erwee: Southern African Pyrometallurgy 2011, R.T. Jones and P. den Hoed, eds., SAIMM, Johannesburg, 2011.

  4. A. Kondratiev, E. Jak, and P. C. Hayes, JOM, 2002, vol. 54, pp. 41-45.

    Article  Google Scholar 

  5. M. M Gladkii, Metallurgist, 1961, vol. 5, pp. 355-57.

    Article  Google Scholar 

  6. Y. Morizane, B. Ozturk, and R. J. Fruehan, Metall. Mater. Trans. B, 1999, vol. 30B, pp. 29-43.

    Article  Google Scholar 

  7. K. C. Mills, L. Yuan, and R. T. Jones, J. South Afr. Inst. Min. Metall., 2011, vol. 111, pp. 649-58.

    Google Scholar 

  8. S. Sridhar, JOM, 2002, vol. 54, pp. 46-50.

    Article  Google Scholar 

  9. Q. F. Shu, Steel Res Int., 2009, vol. 80, pp. 107-13.

    Google Scholar 

  10. [10] A. Shankar, M. Görnerup, A. K Lahiri and S. Seetharaman, Metall.Mater. Trans. B., 2007, vol. 6, pp. 911-15.

    Article  Google Scholar 

  11. [11] J. S. Machin, D. L. Hanna, J. Am. Ceram. Soc., 1945, vol. 28, pp. 310-16.

    Article  Google Scholar 

  12. [12] J. S. Machin, T. B. Yee, J. Am. Ceram. Soc., 1954, vol. 37, pp. 177-86.

    Article  Google Scholar 

  13. [13] N. Saito, N. Hori, K. Nakashima and K. Mori, Metall. Mater. Trans. B., 2003, vol. 34, pp. 509-16.

    Article  Google Scholar 

  14. [14] J. R. Kim, Y. S. Lee, D. J. Min, S. M. Jung and S. H. Yi, ISIJ Int., 2004, vol. 44, pp. 1291-97.

    Article  Google Scholar 

  15. [15] S. Scok, S. Jung, Y. Lee, D. Min, ISIJ Int., 2007, vol. 47, pp. 1090-96.

    Article  Google Scholar 

  16. [16] X. L. Tang, Z. T. Zhang, M. Guo, M. Zang, X. D. Wang, J. Iron Steel Res. Int., 2011, vol. 18, pp. 1-17.

    Article  Google Scholar 

  17. [17] M. Nakamoto, T. Tanaka, J. Lee and T. Usui, ISIJ Int., 2004, vol. 12, pp. 2115-19.

    Article  Google Scholar 

  18. [18] X. F. Xu, T. Zang, M. Q. Sheng, C. Jie, K. Wan, J. Y. Zhang, Ironmak. Steelmak., 2014, vol. 41, pp. 486-92.

    Article  Google Scholar 

  19. [19] K. C. Mills, S. Sridar, Ironmaking and Steelmaking, 1999, vol. 26, pp. 262-68.

    Article  Google Scholar 

  20. [20] A. Kondratiev, E. Jak and P. C. Hayes, ISIJ Int., 2006, vol. 46, pp. 375-84.

    Article  Google Scholar 

  21. [21] S. Seetharaman, Du. Sichen, F. Z. Ji, Metall. Mater. Trans. B, 2000, vol. 31, pp. 105-09.

    Article  Google Scholar 

  22. [22] J. H. Park, H. Kim, D. J. Min, Metall. Mater. Trans. B, 2008, vol. 39, pp. 150-53.

    Article  Google Scholar 

  23. [23] L. Forsbacka, L. Holappa, T. Iida, Y. Kita and Y. Toda, Scand.J.Metall., 2003, vol. 32, pp. 273-80.

    Article  Google Scholar 

  24. [24] Y. S. Lee, D. J. Min, S. M. Jung and S. H. Yi, ISIJ Int., 2004, vol. 8, pp. 1283-90.

    Article  Google Scholar 

  25. [25] M. Suzuki, E. Jak, Metall. Mater. Trans. B, 2013, vol. 44, pp. 1451-65.

    Article  Google Scholar 

  26. [26] M. Song, Q. Shu and D. Sichen, Steel Res. Int., 2011, vol. 82, pp. 260-68.

    Article  Google Scholar 

  27. [27] H. S Ray and S. Pal, Ironmaking and Steelmaking, 2004, vol. 31, pp. 125-30.

    Article  Google Scholar 

  28. [28] A. Shankar, M. Görnerup, A. K. Lahiri & S. Seetharaman, Ironmaking & Steelmaking, 2007, vol. 34, pp. 477-81.

    Article  Google Scholar 

  29. [29] Q. Shu and J. Zhang, ISIJ Int., 2006, vol. 46, pp. 1548-53.

    Article  Google Scholar 

  30. [30] Q. F. Shu, Steel Res. Int., 2009, vol. 80, pp. 107-13.

    Google Scholar 

  31. [31] Q. Shu, Z. Wang, and K. Chou, Steel Res. Int., 2011, vol. 82, pp. 779-85.

    Article  Google Scholar 

  32. [32] L. Zhang and S. Jahanshahi, Scand. J. Metall., 2001, vol. 30, pp. 364-69.

    Article  Google Scholar 

  33. [33] P. V. Riboud, Y. Roux, L. D. Lucas, H. Gaye, Hutten Praxis Metallweiterver 1981, vol. 19, pp. 859-60.

    Google Scholar 

  34. [34] T. Iida, H. Sakai, Y. Kita, K. Shigeno, ISIJ Int., 2000, vol. 40, pp. S110-14.

    Article  Google Scholar 

  35. www.FactSage.com. 2013.

  36. [36] H. Kim, H. Matsuura, F. Tsukihashi, W. Wang, D.J. Min and I. Sohn, Metall. Mater. Trans. B., 2013, vol. 44, pp. 5-12.

    Article  Google Scholar 

  37. [37] Z. Wang, Y. Sun, S. Sridhar, M. Zhang, M. Guo, Metall. Mater. Trans. B, 2015, vol. 46, pp. 537-41.

    Article  Google Scholar 

  38. [38] G.H. Kim, C.S. Kim and I. Sohn, ISIJ Int., 2013, vol. 53, pp. 170-76.

    Article  Google Scholar 

  39. [39] J. H. Park, D. J. Min, and H. S. Song, Metall. Mater. Trans. B, 2004, vol. 35B, pp. 269-75.

    Article  Google Scholar 

  40. [40] H. S. Park, H. Kim, and I. Sohn, Metall. Mater. Trans. B, 2011, vol. 42B, pp. 324-30.

    Article  Google Scholar 

  41. [41] G. H. Kim and I. Sohn, ISIJ Int., 2012, vol. 52, pp. 68-73.

    Article  Google Scholar 

  42. [42] F. Shahbazian, D. Sichen, and S. Seetharaman, ISIJ Int., 2002, vol. 42, pp. 155-62.

    Article  Google Scholar 

  43. [43] G.H. Kim, I. Shon, J. Non- Cryst. Solids., 2012, vol. 358, pp. 1530-37.

    Article  Google Scholar 

  44. [44] L. Yao, S. Ren, X. Wang, Q. Liu, L. Dong, Steel Res. Int., 2016, vol. 87, pp. 241-249.

    Article  Google Scholar 

  45. [45] B. O. Mysen, Earth-Science Reviews., 1990, vol. 27, pp. 281-365.

    Article  Google Scholar 

  46. [46] L. Zhang and S. Jahanshahi, Metall. Mater. Trans. B., 1998, vol. 29, pp. 187-95.

    Article  Google Scholar 

  47. Y.S. Lee, J.R. Kim, S.H. Yi, and D.J. Min: International Conference on Molten Slags, Fluxes and Salts, SAIMM, Cape Town, 2004, 225.

  48. [48] Y. Gao, S. Wang, C. Hong, X. Ma and F. Yang, Int. J. Miner. Metall. Mater., 2014, vol. 21, pp. 353-62.

    Article  Google Scholar 

  49. Y.Kawai, The Research Institute of Mineral Dressing and Metallurgy, 1952, pp. 615–21.

  50. [50] B.O. Mysen, D. Virgo and C.M. Scarfe, Am. Mineral., 1980, vol. 65, pp. 690-710.

    Google Scholar 

  51. [51] P.F. McMillan, B.T. Poe, PH. Gillet and B. Reynard, Geochim. Cosmochim. Acta. 1994, vol. 58, pp. 3653-64.

    Article  Google Scholar 

  52. [52] J.H. Park, D.J. Min and H.S. Song, ISIJ Int., 2002, vol. 42, pp. 344-51.

    Article  Google Scholar 

  53. [53] J.H. Park, D.J. Min and H.S. Song, Metall. Mater. Trans. B., 2004, vol. 35, pp. 269-75.

    Article  Google Scholar 

  54. [54] P. McMillan, Am. Mineral., 1984, vol. 69, pp. 622-44.

    Google Scholar 

  55. [55] J.H. Park, Metall. Mater. Trans. B., 2013, vol. 44B, pp. 938-47.

    Article  Google Scholar 

  56. [56] S. Ueda, H. Koyo, T. Ikeda, Y. Kariya and M. Maeda, ISIJ Int. 2000, vol. 40, pp. 739-43.

    Article  Google Scholar 

  57. [57] J. Gau, G. Wen, T. Huang, P. Tang, Q. Liu, J. Non- Cryst. Solids. 2016, vol. 435, pp. 33-39.

    Article  Google Scholar 

  58. [58] T. Matsumiya, K. shimoda, K. Saito, K. Kanehashi and W. Yamada: ISIJ Int., 2007, vol. 47, pp. 802-04

    Article  Google Scholar 

  59. W.H. Kim and D.J. Min, Proceedings of the Ninth International Conference on Molten Slags, Fluxes and Salts (MOLTEN12), CSM, Beijing, 2012.

  60. [60] L. Pengchang, N. Xiaojun, Metall. Mater. Trans. B. 2016, vol. 47, pp. 446-57.

    Article  Google Scholar 

  61. A. Shankar: Studies on high alumina blast furnace slags, 2007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natraj Yedla.

Additional information

Manuscript submitted July 29, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talapaneni, T., Yedla, N., Pal, S. et al. Experimental and Theoretical Studies on the Viscosity–Structure Correlation for High Alumina-Silicate Melts. Metall Mater Trans B 48, 1450–1462 (2017). https://doi.org/10.1007/s11663-017-0963-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-0963-3

Keywords

Navigation