Skip to main content
Log in

Comparison of CFD Simulations with Experimental Measurements of Nozzle Clogging in Continuous Casting of Steels

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Measurements of clog deposit thickness on the interior surfaces of a commercial continuous casting nozzle are compared with computational fluid dynamics (CFD) predictions of melt flow patterns and particle–wall interactions to identify the mechanisms of nozzle clogging. A submerged entry nozzle received from industry was encased in epoxy and carefully sectioned to allow measurement of the deposit thickness on the internal surfaces of the nozzle. CFD simulations of melt flow patterns and particle behavior inside the nozzle were performed by combining the Eulerian-Lagrangian approach and detached eddy simulation turbulent model, matching the geometry and operating conditions of the industrial test. The CFD results indicated that convergent areas of the interior cross section of the nozzle increased the velocity and turbulence of the flowing steel inside the nozzle and decreased the clog deposit thickness locally in these areas. CFD simulations also predicted a higher rate of attachment of particles in the divergent area between two convergent sections of the nozzle, which matched the observations made in the industrial nozzle measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. SK Choudhary and AJ Khan: Steel Times Int., 2000, vol. 24, p. 21.

    Google Scholar 

  2. KG Rackers and BG Thomas: Urbana, 1995, vol. 51, p. 61801.

    Google Scholar 

  3. H. Schuster S. Rödl, S. Ekerot, G. Xia,N. Veneri, F. Ferro, S. Baragiola, P. Rossi, S. Fera, V. Colla, G. Bioli, M. Krings, L.-F. Sancho, A. Diaz, M. Andersson and N. Kojola, Research Fund for Coal and Steel Unit 2008.

  4. A Theodorakakos and G Bergeles: Metall. Mater. Trans. B, 1998, vol. 29, pp. 1321-1327.

    Article  Google Scholar 

  5. GA Panaras, A Theodorakakos, and G Berggeles: Metall. Mater. Trans. B, 1998, vol. 29, pp. 1117-1126.

    Article  Google Scholar 

  6. J Anagnostopoulos and G Bergeles: Metall. Mater. Trans. B, 1999, vol. 30, pp. 1095-1105.

    Article  Google Scholar 

  7. Noriko Kubo, Toshio Ishii, Jun Kubota, and Norichika Aramaki: ISIJ Int., 2002, vol. 42, pp. 1251-1258.

    Article  Google Scholar 

  8. Yeong-Ho Ho, Chi-Hung Chen, and Weng-Sing Hwang: ISIJ Int., 1994, vol. 34, pp. 255-264.

    Article  Google Scholar 

  9. M. Mohammadi-Ghaleni, M. Zivdar, and M. Reza Nemati: in 6th International Conference on Advanced Computational and Experimenting, 2012, Istanbul, Turkey.

  10. Hua Bai and Brian G Thomas: Metall. Mater. Trans. B, 2001, vol. 32, pp. 707-722.

    Article  Google Scholar 

  11. Lifeng Zhang, Yufeng Wang, and Xiangjun Zuo: Metall. Mater. Trans. B, 2008, vol. 39, pp. 534-550.

    Article  Google Scholar 

  12. C Pfeiler, M Wu, and A Ludwig: Mater. Sci. Eng. A, 2005, vol. 413, pp. 115-120.

    Article  Google Scholar 

  13. Quan Yuan, Brian G Thomas, and SP Vanka: Metall. Mater. Trans. B, 2004, vol. 35, pp. 685-702.

    Article  Google Scholar 

  14. Quan Yuan, Brian G Thomas, and SP Vanka: Metall. Mater. Trans. B, 2004, vol. 35, pp. 703-714.

    Article  Google Scholar 

  15. B.G. Thomas and H. Bai: in Steelmaking Conference Proceedings, 2001.

  16. R Sambasivam: Ironmak. Steelmak., 2006, vol. 33, pp. 439-453.

    Article  Google Scholar 

  17. Lifeng Zhang, Brian G Thomas (2006) J. Univ. Sci. Technol. Beijing Min. Metall. Mater., 13: 293-300.

    Google Scholar 

  18. Fangming Yuan, Xinghua Wang, Jiongming Zhang, and Li Zhang: J. Univ. Sci. Technol. Beijing Miner. Metall. Mater., 2008, vol. 15, pp. 227-235.

    Google Scholar 

  19. Hong Lei, Dian-Qiao Geng, and Ji-Cheng He: ISIJ Int., 2009, vol. 49, pp. 1575-1582.

    Article  Google Scholar 

  20. Mujun Long, Xiangjun Zuo, Lifeng Zhang, and Dengfu Chen: ISIJ Int., 2010, vol. 50, pp. 712-720.

    Article  Google Scholar 

  21. Mahdi Mohammadi-Ghaleni, Mohsen Asle Zaeem, Jeffrey D Smith, and Ronald O’Malley: Metall. Mater. Trans. B, 2016. doi:10.1007/s11663-016-0729-3

    Google Scholar 

  22. ANSYS CFX 14.0 User Manual. Ansys Inc., Canonsburg

  23. Peiyuan Ni, Lage Tord Ingemar Jonsson, Mikael Ersson, and Pär Göran Jönsson: Int. J. Multiph. Flow, 2014, vol. 62, pp. 152-160.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the Kent D. Peaslee Steel Manufacturing Research Center (PSMRC) at Missouri University of Science and Technology (Missouri S&T) for funding support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Asle Zaeem.

Additional information

Manuscript submitted April 26, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi-Ghaleni, M., Asle Zaeem, M., Smith, J.D. et al. Comparison of CFD Simulations with Experimental Measurements of Nozzle Clogging in Continuous Casting of Steels. Metall Mater Trans B 47, 3384–3393 (2016). https://doi.org/10.1007/s11663-016-0798-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0798-3

Keywords

Navigation