Skip to main content
Log in

Study of Flow Characteristics of Tundish Based on Digital Image Velocimetry Technique

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A synthetic hydraulic simulation platform of continuous casting was established based on the digital image velocimetry technique, which was an effective method to obtain flow characteristics. The full physical models of ultrathick slab continuous casting tundish and reduced scale six-stand T-type tundish were simulated before industrial production to assess the effectiveness of these devices and to optimize the tundish design with external heating. The flow and residence time distribution curves obtained by noncontact measurement were investigated based on the digital image technology. The random velocity fluctuations were consequences of the swirl or eddies generated by turbulent flow from the inlet to outlet section. These swirl or eddies tended to be a large circle in the middle of the tundish and small in the vicinity of the wall. The geometric parameters of the tundish were one of the most important factors for tundish design, although the flow control device was important. As a whole, the results derived from physical modeling were in good agreement with those obtained from numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. D. Mazumdar: Trans. Ind. Inst. Met., 2013, vol. 66, pp. 597–610.

    Article  Google Scholar 

  2. M. Warzecha, T. Merder, H. Pfeifer, and J. Pieprzyca: Steel Res. Int., 2010, vol. 81, pp. 987–93.

    Article  Google Scholar 

  3. Y. Sahai and Toshihiko Emi: Tundish Technology for Clean Steel Production, World Scientific, Hackensack, NJ, 2008, pp. 107–265.

    Google Scholar 

  4. A. Cwudzinski: Metall. Res. Technol., 2014, vol. 111, pp. 45–55.

    Article  Google Scholar 

  5. S.K. Mishra, P.K. Jha, S.C. Sharma, and S.K. Ajmani: Int. J. Min. Met. Mater., 2011, vol. 18, pp. 535–42.

    Article  Google Scholar 

  6. R. Bolling, H.J. Odenthal, and H. Pfeifer: Steel Res. Int., 2005, vol. 76, pp. 71–80.

    Google Scholar 

  7. K. Chattopadhyay, M. Isac, and R.I.L. Guthrie: Ironmaking and Steelmaking, 2011, vol. 38, pp. 398–400.

    Article  Google Scholar 

  8. A. Braun, M. Warzecha, and H. Pfeifer: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 549–59.

    Article  Google Scholar 

  9. G. Solorio-Diaz, A. Ramos-Banderas, J.D. Barreto, and R.D. Morales: Steel Res. Int., 2007, vol. 78, pp. 248–53.

    Google Scholar 

  10. N. Ding, Y.P. Bao, Q.S. Sun, and L.F. Wang: Int. J. Min Met. Mater., 2011, vol. 18, pp. 292–96.

    Article  Google Scholar 

  11. T. Merder, J. Pieprzyca, and M. Saternus: Metalurgija, 2014, vol. 53, pp. 155–58.

    Google Scholar 

  12. Y. Sahai: J. Iron Steel Res. Int., 2008, vol. 15, pp. 643–52.

    Google Scholar 

  13. R. Sanchez-Ramirez, M. Diaz-Cruz, and R. Macias-Salinas: Can. Metall. Q., 2013, vol. 52, pp. 166–75.

    Article  Google Scholar 

  14. P.K. Jha, P.S. Rao, and A. Dewan: ISIJ Int., 2008, vol. 48, pp. 154–60.

    Article  Google Scholar 

  15. J.G. Liu, H.C. Yan, L. Liu, and X.H. Wang: J. Iron Steel Res. Int., 2007, vol. 14, pp. 13–19.

    Google Scholar 

  16. L.C. Zhong, R.C. Hao, J.Z. Li, and Y.X. Zhu: J. Iron Steel Res. Int., 2014, vol. 21, pp. 10–16.

    Article  Google Scholar 

  17. R. Koitzsch, H.J. Odenthal, and H. Pfeifer: Steel Res. Int., 2007, vol. 78, pp. 473–81.

    Google Scholar 

  18. T. Merder, M. Saternus, M. Warzecha, and P. Warzecha: Metalurgija, 2014, vol. 53, pp. 323–26.

    Google Scholar 

  19. A. Cwudzinski and J. Jowsa: Arch. Metall. Mater., 2008, vol. 53, pp. 749–60.

    Google Scholar 

  20. L.C. Zhong, B.K. Li, Y.X. Zhu, R.G. Wang, W.Z. Wang, and X.J. Zhang: ISIJ Int., 2007, vol. 47, pp. 88–94.

    Article  Google Scholar 

  21. Q. Wang, B.K. Li, and F. Tsukihashi: ISIJ Int., 2014, vol. 54, pp. 311–20.

    Article  Google Scholar 

  22. T. Merder: Metalurgija, 2013, vol. 52, pp. 161–64.

    Google Scholar 

  23. A. Espino-Zarate, R.D. Morales, A. Najera-Bastida, M.J. Macias-Hernandez, and A. Sandoval-Ramos: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 962–75.

    Article  Google Scholar 

  24. N. Alkishriwi, M. Meinke, W. Schroder, A. Braun, and H. Pfeifer: Steel Res. Int., 2006, vol. 77, pp. 565–75.

    Google Scholar 

  25. V. Singh, S.K. Ajmani, A.R. Pal, S.K. Singh, and M.B. Denys: Ironmaking and Steelmaking, 2012, vol. 39, pp. 171–79.

    Article  Google Scholar 

  26. A. Huang, H.Z. Wang, H.Z. Gu, and M.J. Zhang: J. Iron Steel Res. Int., 2008, vol. 15, pp. 478–82.

    Article  Google Scholar 

  27. A. Kumar, S.C. Koria, and D. Mazumdar: ISIJ Int., 2007, vol. 47, pp. 1618–24.

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the China National Heavy Machinery Research Institute Co., Ltd. and Qingdao Iron and the Steel Group Co., Ltd. The authors thank Baotou Lianfang High Tech Co., Ltd. for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Huang.

Additional information

Manuscript submitted December 5, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Zhang, Y., Zhang, Y. et al. Study of Flow Characteristics of Tundish Based on Digital Image Velocimetry Technique. Metall Mater Trans B 47, 3144–3157 (2016). https://doi.org/10.1007/s11663-016-0740-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0740-8

Keywords

Navigation