Skip to main content
Log in

Fluid Flow and Mechanisms of Momentum Transfer in a Six-Strand Tundish

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Flow in a six-strand billet tundish, using turbulence inhibitors (TIs), was characterized using inputs of a pulsed tracer and mathematical simulations. It was found that to control turbulence attaining high fluid fractions under plug flow patterns, the key parameter for designing TIs is the dissipation rate of kinetic energy. TI designs that induce steep dissipation gradients are less efficient as flow controllers than those designs that yield more prolonged dissipation gradients from the inhibitor bottom to the bulk flow. A direct relationship between the dissipation of kinetic energy and the linear acceleration of the smallest turbulent eddies in the flow was established through dimensional analysis. The inhibitor with the highest linear accelerations of eddies in the viscous sublayer at the Kolmogorov scale, for a given liquid flow rate, yields the better flow control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

a η :

Acceleration for small eddies (m s−2)

a λ :

Acceleration of eddies with scales λ (m s−2)

C :

Concentration (kg m−3)

C i :

Tracer concentration at strand i (kg m−3)

De :

Eddy diffusivity (m2 s−1)

D eff :

Effective diffusivity (m2 s−1)

Dm :

Molecular diffusivity (m2 s−1)

D t :

Turbulent diffusivity (m2 s−1)

E(t):

Residence-time distribution or age-distribution frequency (fraction of ages s−1)

E i :

RTD curve at strand i (fraction of ages s−1)

g :

Gravitation acceleration (m s−2)

G :

Generation term (Eqs. [15] and [16]) (m2 s−2)

I(t):

Internal age-distribution frequency (fraction of ages s−1)

k :

Turbulent kinetic energy (m2 s−2)

L :

Distance (m)

m i :

Mass of tracer exiting through strand i (kg)

M :

Total mass of tracer injected into the vessel (kg)

P :

Pressure (Pa)

Pe :

Peclet number

Q :

Volumetric flow rate (m3 s−1)

ReL :

Reynolds number to the integral scale length

Re η :

Reynolds number viscous sublayer

Re λ :

Reynolds number with scales

\( \bar{t} \) :

Mean residence time (s)

t :

Time (s)

T η :

Period of turbulent motion for small eddies (s−1)

T λ :

Period of turbulent motion of eddies with scales λ (s−1)

u :

Velocity (m s−1)

ν λ :

Velocities of eddies with scales λ (m s−1)

V :

Volume (m3)

η :

Scale of the viscous sublayer or Kolmogorov’s scale

ε :

Dissipation rate of the turbulent kinetic energy or dissipation of kinetic energy (m2 s−3)

ΔU :

Change in the average velocity (m s−1)

Λ(t):

IF (fraction of ages s−1)

λ :

Scales

μ :

Coefficient viscosity (Pa s)

µ eff :

Effective viscosity (Pa s)

μ l :

Laminar viscosity (Pa s)

μ t :

Turbulent viscosity (Pa s)

v :

Kinematic viscosity (m2 s−1)

ρ :

Density (kg m−3)

σ 2 :

Standard deviation (dimensionless)

σ t :

Turbulent Schmidt number (dimensionless)

θ :

Dimensionless time

iik:

Three Cartesian coordinate directions x, y, and z

D :

Dead

P :

Plug

References

  1. M. Zorzut, F. Vecchiet, N. Kapaj, and A. Padermo: BHM, 2007, vol. 152, pp. 355–60.

    CAS  Google Scholar 

  2. R.D. Morales, J. de J. Barreto, S. López-Ramírez, J. Palafox-Ramos, and D. Zacharias: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1505–15.

  3. L. Zhong, B. Li, Y. Zhu, R. Wang, W. Wang, and X. Zhang: ISIJ Int., 2007, vol. 47, pp. 88–94.

    Article  CAS  Google Scholar 

  4. J. Madias, D. Martin, M. Ferreyra, R. Villoria, and A. Garamendy: ISIJ Int., 1999, vol. 39, pp. 787–94.

    Article  CAS  Google Scholar 

  5. P.K. Jha, S.K. Dash, and S. Kumar: ISIJ Int., 2001, vol. 41, pp. 1437–46.

    Article  CAS  Google Scholar 

  6. R.D. Morales, M. Díaz-Cruz, J. Palafox-Ramos. S. López-Ramírez, and J. de J. Barreto: Steel Res., 2000, vol. 8, pp. 11–16.

  7. A. Tripathi and S.K. Ajmani: ISIJ Int., 2005, vol. 45, pp. 1616–25.

    Article  CAS  Google Scholar 

  8. L. García-Demedices, R.D. Morales, S. López-Ramírez, J. de J. Barreto, J. Palafox-Ramos, and M. Díaz-Cruz: Steel Res., 2001, vol. 72, pp. 346–53.

  9. O. Levenspiel: Chemical Reaction Engineering, Wiley, New York, NY, 1962.

    Google Scholar 

  10. Y. Sahai and T. Emi: ISIJ Int., 1996, vol. 36, pp. 667–73.

    Article  CAS  Google Scholar 

  11. D. Mazumdar and R.I.L. Guthrie: ISIJ Int., 1999, vol. 39, pp. 524–47.

    Article  CAS  Google Scholar 

  12. D.M. Himmelblau and K.B. Bischoff: Process Analysis and Simulation. Deterministic Systems, Wiley, New York, NY, 1968.

    MATH  Google Scholar 

  13. D.B. Spalding: Int. J. Numer. Meth. Eng., 1972, vol. 4, pp. 551–59.

    Article  Google Scholar 

  14. B.E. Launder and D.B Spalding: Mathematical Models of Turbulence, Academic Press, London, UK, 1972.

    MATH  Google Scholar 

  15. S.K. Dash: Int. J. Numer. Meth. Heat Fluid Flow, 1996, vol. 6, pp. 37–46.

    Article  MATH  CAS  Google Scholar 

  16. P.K. Jha, R. Ranjan, S.S. Mondal, and S.K. Dash: Int. J. Numer. Meth. Heat Fluid Flow, 2003, vol. 13, pp. 964–96.

    Article  MATH  Google Scholar 

  17. O.J. Illegbusi and J. Szekely: Ironmaking Steelmaking, 1989, vol. 16, pp. 110–15.

    Google Scholar 

  18. O.J. Illegbusi and J. Szekely: Steel Res. Int., 1988, vol. 59, pp. 399–405.

    Google Scholar 

  19. S.B. Pope: Turbulent Flows, Cambridge University Press, London, UK. 2000.

    MATH  Google Scholar 

  20. C.I. Taylor: Diffusion by Continuous Movements, Proc. of The London Mathematical Society, London, UK, 1921.

  21. G. Levich: Physicochemical Hydrodynamics, Prentice Hall, London, UK, 1962.

    Google Scholar 

  22. J. Szekely and N.J. Themelis: Rate Phenomena in Process Metallurgy, Wiley, New York, NY, 1976.

    Google Scholar 

  23. A. Najera-Bastida, L. Garcia-Demedices, P. Ramirez-Lopez, E. Torres-Alonso, and R.D. Morales: Steel Res. Int., 2007, vol. 78, pp. 318–26.

    CAS  Google Scholar 

Download references

Acknowledgments

AEZ gives the thanks to IPN for a granted scholarship to carry out his Ph.D. studies. All authors give thanks to institutions CoNaCyT, EDI, and SNI for their continuous support to the Process Metallurgy Group at IPN-ESIQIE, Department of Metallurgy and Materials Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo D. Morales.

Additional information

Manuscript submitted March 9, 2010.

Appendix A

Appendix A

From a dimensional analysis of turbulent flows it is possible to find a link between velocities of eddies with length scales λ, assumed to be longer than the length scale of the viscous sublayer of the boundary layer or the Kolmogorov’s scale η, but smaller than the integral scale of turbulence:

$$ \nu_{\lambda } = \left( {{\frac{\varepsilon }{\lambda }}} \right)^{{\frac{1}{3}}} $$
(A1)

The dissipation rate of kinetic energy can be related with integral scales of velocity and length according to:

$$ \varepsilon \approx {\frac{{(\Updelta U)^{3} }}{L}} $$
(A2)

where ΔU is the change in the average velocity over a distance equal to a large size scale in the flow, whose magnitude can be as large as the geometric dimensions, L, of the inhibitor (for instance its height or even the bath height). Using Eq. [A2] in Eq. [A1] leads to:

$$ \nu_{\lambda } = \Updelta U\left( {{\frac{\lambda }{L}}} \right)^{{\frac{1}{3}}} $$
(A3)

Thus, the velocities of eddies with a scale λ are smaller than the velocity of the main flow by a factor of \( \left( {{\frac{\lambda }{L}}} \right)^{{\frac{1}{3}}} \). The reductions of velocity and scale are matched by corresponding Reynolds number as follows:

$$ \text{Re}_{\lambda } = {\frac{{\nu_{\lambda }}}{v}} = {\frac{{\Updelta U\left({{\frac{\lambda }{L}}} \right)^{{\frac{1}{3}}} \lambda }}{v}} = {\frac{\Updelta UL}{v}}\,{\frac{{\left( {{\frac{\lambda }{L}}} \right)^{{\frac{1}{3}}} \lambda }}{L}} = \text{Re}_{\text{L}} \left( {{\frac{\lambda }{L}}} \right)^{{\frac{4}{3}}} $$
(A4)

where \( \text{Re}_{\text{L}} = \frac{k^{2}}{\nu \varepsilon}\approx{\frac{\Updelta UL}{v}}\) is the Reynolds number corresponding to the integral length scale and can be calculated directly from CFD simulations. On the other hand, Kolmogorov’s scale is the smallest length in the flow, valid in the subviscous layer, and is given by:

$$ \eta = {\frac{L}{{\text{Re}_{L}^{{\frac{4}{3}}} }}} = \left( {{\frac{{v^{3} }}{\varepsilon }}} \right)^{{\frac{1}{4}}} $$
(A5)

Since λ > η, the characteristic period of turbulent-fluctuating motion of eddies with a size λ will be:

$$ T_{\lambda } = \left( {{\frac{{\lambda^{2} }}{\varepsilon }}} \right)^{{\frac{1}{3}}} \sim {\frac{\lambda }{\nu \lambda }} $$
(A6)

The acceleration of these eddies will be:

$$ a_{\lambda } = {\frac{{d\nu_{\lambda } }}{{dT_{\lambda } }}} = {\frac{{\nu_{\lambda } }}{\lambda }}\sim {\frac{\lambda }{{T_{\lambda }^{2} }}}\sim \left( {{\frac{{\varepsilon^{{\frac{2}{3}}} }}{{\lambda^{{\frac{1}{3}}} }}}} \right) $$
(A7)

Equation [A7] is useful to estimate the acceleration of eddies with sizes λ, which can be of the order of Taylor’s scale[20] or even close to the integral scale of the flow, L. However, someone would like to know the acceleration of the smallest scales eddies from well defined flow variables. In other words, if it is possible to express the acceleration of the smallest scales, then we will have a quantitative idea of the motion of the smallest eddies responsible for the dissipation of kinetic energy. In the viscous sublayer, the local Reynolds number Re η  = 1 and then the velocity scale \( \nu_{\eta } = {\frac{\nu }{\eta }} \) and the corresponding period of fluctuating motion for small eddies is:

$$ T_{\eta } = {\frac{\eta }{{\nu_{\eta } }}}\sim {\frac{{\eta^{2} }}{\nu }}\sim \left( {{\frac{\eta }{\varepsilon }}} \right)^{{\frac{1}{2}}} $$
(A8)

Therefore, the accelerations of these eddies will be:

$$ a_{\eta } = {\frac{{\partial \nu_{\eta } }}{\partial t}}\sim {\frac{{\nu_{\eta } }}{{T_{\eta } }}}\sim {\frac{{\nu_{\eta }^{2} }}{\eta }}\sim {\frac{{\nu_{\eta }^{3} }}{\nu }}\sim \frac{\varepsilon^{\frac{3}{4}}}{\nu^{\frac{1}{4}}} $$
(A9)

According to Levich this proportionality becomes into an equality through a constant[21]:

$$ a_{\eta } = \sqrt 3 \frac{\varepsilon^{\frac{3}{4}}}{\nu^{\frac{1}{4}}} $$
(A10)

Equation [A10] has the advantage over Eq. [A7] because it does not depend on any length scale to be defined; instead it depends on flow variables which are directly accessible through CFD simulations like k − ε, and ν is a fluid property.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espino-Zárate, A., Morales, R.D., Nájera-Bastida, A. et al. Fluid Flow and Mechanisms of Momentum Transfer in a Six-Strand Tundish. Metall Mater Trans B 41, 962–975 (2010). https://doi.org/10.1007/s11663-010-9398-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-010-9398-9

Keywords

Navigation