Skip to main content
Log in

In-Situ Study of Gaseous Reduction of Magnetite Doped with Alumina Using High-Temperature XRD Analysis

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The reduction of magnetite of technical grade and magnetite doped with 3 mass pct Al2O3 was studied in situ using high-temperature XRD (HT-XRD) analysis. Magnetite was reduced by CO-CO2 gas (80 vol pct CO) at 1023 K (750 °C). Reduction of magnetite doped with alumina occurred from the Fe3O4-FeAl2O4 solid solution which has a miscibility gap with critical temperature of 1133 K (860 °C). The degree of reduction of magnetite was derived using Rietveld refinement of the HT-XRD spectra; the compositions of the Fe3O4-FeAl2O4 solid solution and the concentrations of carbon in γ-iron were determined from the lattice constants of the solutions. The reduction of magnetite progressed topochemically with the formation of a dense iron shell. The reduction of alumina-containing magnetite started along certain lattice planes with the formation of a network-like structure. Reduction of alumina-containing magnetite was faster than that of un-doped magnetite; this difference was attributed to the formation of the network-like structure. Hercynite content in the Fe3O4-FeAl2O4 solid solution in the process of reduction of magnetite doped with 3 mass pct Al2O3 increased from 5.11 to 20 mass pct, which is close to the miscibility gap at 1023 K (750 °C). The concentration of carbon in γ-Fe (0.76 mass pct) formed in the reduced sample of magnetite doped with 3 mass pct Al2O3 was close to the equilibrium value with 80 vol pct CO to 20 vol pct CO2 gas used in the HT-XRD experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H. K. Kohl and H. J. Engell, Arch. Eisenhüttenwes., 1963, vol. 34, pp. 411-18.

    Google Scholar 

  2. W. Plusshkell and B. V. S. Sarma, Eisenhüttenwes., 1973, vol.44, pp. 161-66.

    Google Scholar 

  3. S. P. Matthew and P. C. Hayes, Metall. Trans. B, 1990, vol. 21B, pp. 141-51.

    Article  Google Scholar 

  4. S. P. Matthew and P. C. Hayes, Metall. Trans. B, 1990, vol. 21B, pp.153-72.

    Article  Google Scholar 

  5. S. P. Matthew, T. R. Cho and P. C. Hayes, Metall. Trans. B, 1990, vol. 21B, pp. 733-41.

    Article  Google Scholar 

  6. M. Bahgat and M. H. Khedr, Mat. Sci. Eng. B, 2007, vol.138, pp. 251-58.

    Article  Google Scholar 

  7. H. P. Pimenta and V. Seshadri: Ironmaking and Steelmaking, 2002, vol. 29, pp. 175-79.

    Article  Google Scholar 

  8. T. Sharma, R. G. Gupta and B. Prakash: ISIJ Int., 1993, vol. 33, pp. 446-53.

    Article  Google Scholar 

  9. Y. Suzuki, M. Yamamoto, T. Kotanigawa and K. Nishida: Metall. Trans. B, 1981, 12B, pp. 691-98.

    Article  Google Scholar 

  10. Y. Iguchi and M. Inouye: Trans. ISIJ, 1982, vol. 22, pp. 678-88.

    Article  Google Scholar 

  11. T. Paananen, K. Heinänen and J. Härkki: ISIJ Int., 2003, vol. 43, pp. 597–605.

    Article  Google Scholar 

  12. Y. Kapelyushin, X. Xing, J. Zhang, Y. Sasaki and O. Ostrovski, Metall. Trans. B, 2015, vol. 46, pp. 1175-1185.

    Article  Google Scholar 

  13. A.C. Turnock and H.P. Eugster: J. Petrol, 1962, vol. 3, pp. 533-565.

    Article  Google Scholar 

  14. L. Cheng, A. Böttger, Th. H. de Keijser and E. J. Mittenmeijer: Scr. Met. Mater., 1990, vol. 24, pp. 50-14.

  15. M. Onink, C. M. Brakman, F. D. Tichelaar, E. J. Mittenmeijer and S. van der Zwaag: Scr. Met & Mater., 1993, vol. 29, pp. 1011-16.

    Article  Google Scholar 

  16. I. Seki and K. Nagata: ISIJ Int., 2005, vol. 45, pp. 1789-94.

    Article  Google Scholar 

  17. X. Chen and E. Vourine: ISIJ. Int., 2009, vol. 49, pp. 1220-24.

    Article  Google Scholar 

  18. S. S. Babu, E. D. Specht, S. A. David, E. Karapetrova, P. Zschack, M. J. Peet and H. K. D. H. Bhadeshia: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3281-89.

    Article  Google Scholar 

  19. H. J. Stone, M. Peet, H. K. D. H. Bhadeshia, P. J. Withers, S. S. Babu and E. D. Specht: Proc. R. Soc. A, 2008, vol. 464, pp. 1009-27.

    Article  Google Scholar 

  20. M. Kimura and R. Murao: ISIJ Int., 2013, vol. 53, pp. 2047-55.

    Article  Google Scholar 

  21. N. V. Y. Scarlett, M. I. Pownceby, I. C. Madsen and A. N. Christensen: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 929-36.

    Article  Google Scholar 

  22. N. A. S. Webster, M. I. Pownceby, I. C. Madsen and J. A. Kimpton: Metall. Mater. Trans. B, 2012, vol. 43B, pp.1344-57.

    Article  Google Scholar 

  23. N. A. S. Webster, M. I. Pownceby, I. C. Madsen and J. A. Kimpton: ISIJ. Int., 2013, vol.53, pp. 774-81.

    Article  Google Scholar 

  24. H. Ree and M. Tate: Tetsu-to-Hagané (in Japanese), 1974, vol. 60, pp. 480-85.

    Google Scholar 

  25. W. K. Jozwiak, E. Kaczmarek, T. P. Maniecki, W. Ignaczak and W. Maniukiewicz: Applied Catalysis A, 2007, 326, pp. 17-27.

    Article  Google Scholar 

  26. H. M. Rietveld: J. Appl. Cryst., 1969, vol. 2, 65-71.

    Article  Google Scholar 

  27. H. Jung and W. J. Thomsan: J. Catal., 1991, 128, 218-30.

    Article  Google Scholar 

  28. A. Hoffmann and W. A. Fisher: Z. Phys. Chem. N. F., 1956, vol. 7, 80-90.

    Article  Google Scholar 

  29. L. M. Atlas and W. K. Sumida: J. Amer. Ceram. Soc., 1958, vol. 41, 150-160.

    Article  Google Scholar 

  30. R. P. Smith: J. Amer. Chem. Soc., 1946, vol. 69, 1163-75.

    Article  Google Scholar 

  31. R. J. Hill: Am. Mineral., 1984, vol. 69, 937-942.

    Google Scholar 

Download references

Acknowledgements

This project was financially supported by POSCO (South Korea) and Australian Research Council (ARC Linkage Project LP1200200634).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Ostrovski.

Additional information

Manuscript submitted May 4, 2015.

Appendix

Appendix

Calculation of the degree of reduction of magnetite from results of HT-XRD analysis

Alumina and impurities in samples Mag0 and Mag3 were ignored. Iron in the reduced samples existed in unreduced magnetite, wüstite, and metallic iron. Mass fractions of these phases in the sample at different reduction stages were determined by the Rietveld refinement of the XRD spectra: a is mass pct of magnetite (magnetite-based solid solution in Mag3), b is mass pct of wüstite, and c is mass pct of Fe (α-Fe + γ-Fe). Calculation of the degree of magnetite reduction was based on Eq. [2].

  1. (1)

    The initial mass of magnetite was calculated from the mass balance for iron as follows:

    $$ M_{\text{mag}} = [a + (W_{\text{mag}} /3W_{\text{wus}} )b + (W_{\text{mag}} /3W_{\text{Fe}} )c] $$

    where W mag, W wus, and W Fe are mole masses of magnetite (=232), wüstite (=72), and iron (=56).

  2. (2)

    The initial oxygen content (g) in magnetite before the reduction is

    $$ M_{\text{O}} = \, (W_{\text{mO}} /W_{\text{mag}} ) \, M_{\text{mag}} \left( g \right) $$

    The removed oxygen from magnetite is

    $$ [(W_{\text{O}} /3W_{\text{wus}} )b + (W_{\text{mO}} /W_{\text{Fe}} )c] $$

    where W O and W mO are the mole mass of oxygen (=16) and mass of oxygen in one mole magnetite (=64).

  3. (3)

    Thus, the degree of reduction RD is calculated as follows:

    $$ {\text{RD}} = [(W_{\text{O}} /3W_{\text{wus}} )b + (W_{\text{mO}} /W_{\text{Fe}} )c]/M_{\text{O}} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapelyushin, Y., Sasaki, Y., Zhang, J. et al. In-Situ Study of Gaseous Reduction of Magnetite Doped with Alumina Using High-Temperature XRD Analysis. Metall Mater Trans B 46, 2564–2572 (2015). https://doi.org/10.1007/s11663-015-0437-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0437-4

Keywords

Navigation