Skip to main content
Log in

Decarburization of Levitated Fe-Cr-C Droplets by Carbon Dioxide

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Experiments have been conducted at 1873 K (1600 °C) to study the kinetics of decarburization of Fe-Cr-C levitated droplets containing 10, 17, and 20 wt pct Cr using argon–carbon dioxide gas mixtures containing up to 30 pct CO2, at flow rates of 100, 1000, 3000 and 12200 mL min−1. It was found that chromium did not have a strong influence on the kinetics of decarburization while showing only minor effects on the extent of carbon removal. The results indicate that, for high carbon concentrations in the melt, the decarburization rates were controlled by mass transfer in the gas phase. Conventional formulation of governing mass transport numbers did not adequately describe the experimental observations made in this work. The observed rates are consistently higher than the values predicted using either the Ranz–Marshall correlation or the Steinberger–Treybal equation. A new correlation has been proposed to express the decarburization kinetics of levitated droplets for gas-flows in the range of Reynolds numbers between 2 and 100. The experimentally-derived model was found to be in excellent agreement with rate data derived from studies conducted by other researchers using levitated droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

Area of droplet surface (cm2)

Ar :

Archimedes number \( \left( { = \frac{Gr'}{{Re^{2} }}} \right) \)

C bulk :

Carbon concentration in bulk metal (wt pct)

C surface :

Carbon concentration at the gas–metal interface (wt pct)

C t :

Total molar concentration in gas phase (mol cm-3

C p :

Heat capacity of gas (J g−1 K−1)

D AB :

Mutual diffusion coefficient in gas phase (cm2 s−1)

d p :

Diameter of the droplet (cm)

f :

Coefficient in Eq. [9]

Gr′:

Mean Grashof number (=Gr m + Gr H(Sc/Pr)0.5)

Gr m :

Grashof number for mass transfer \( \left( { = \frac{{\rho_{\text{g}} gd_{\text{p}}^{3} \left( {C_{\text{i}} - C_{\text{b}} } \right)}}{{\mu_{\text{g}}^{2} }}} \right) \)

Gr H :

Grashof number for heat transfer \( \left( { = \frac{{gd_{\text{p}}^{3} \left( {T_{\text{i}} - T_{\text{b}} } \right)}}{{T_{\text{f}} \mu_{\text{g}}^{2} }}} \right) \)

J i :

Flux of diffusion species i (mol cm−2 s−1)

k :

Thermal conductivity of gas (J cm−1 s−1 K−1)

k g :

Gas transfer coefficient (cm s−1)

k l :

Liquid transfer coefficient (cm s−1)

k x :

Mass transfer coefficient \( ({\text{mol}}\,{\text{cm}}^{ - 2} \,{\text{s}}^{ - 1} \,{\text{atm}}^{ - 1} ) \)

M :

Molecular weight of gas mixture \( ({\text{g}}\,{\text{mol}}^{ - 1} ) \)

M C :

Atomic weight of carbon \( ({\text{g}}\,{\text{mol}}^{ - 1} ) \)

m :

Coefficient in Eq. [9]

n :

Coefficient in Eq. [9]

P :

Total pressure (atm)

Pr :

Prandtl number \( \left( { = \frac{{\mu_{\text{g}} C_{\text{p}} }}{k}} \right) \)

R :

Gas constant (\( {\text{cm}}^{3} {\text{atm}}\,{\text{mol}}^{ - 1} \,{\text{K}}^{ - 1} \))

Ra :

Rayleigh number (=GrSc)

Re :

Reynolds number \( \left( { = \frac{{d_{\text{p}} v\rho_{\text{g}} }}{{\mu_{\text{g}} }}} \right) \)

Sc :

Schmidt number \( \left( { = \frac{{\mu_{\text{g}} }}{{\rho_{\text{g}} D_{\text{AB}} }}} \right) \)

Sh :

Sherwood number \( \left( { = \frac{{d_{\text{p}} k_{\text{g}} }}{{D_{\text{AB}} }}} \right) \)

T f :

Film temperature (K) \( \left( { = \frac{{T_{\text{i}} + T_{\text{b}} }}{2}} \right) \)

t :

Time (s)

T E :

Effective temperature of gases (K) (=0.83T f)

T b :

Bulk gas temperature (K)

T i :

Gas–metal interface temperature (K)

v :

Relative velocity between gas and droplet (cm s−1)

W :

Mass of the droplet (g)

\( X_{{{\text{CO}}_{2} }}^{\text{b}} \) :

Mole fraction of CO2 in the bulk gas

\( X_{{{\text{CO}}_{2} }}^{i} \) :

Mole fraction of CO2 on the gas–metal interface

γ :

Coefficient in Eq. [9]

β :

Coefficient in Eq. [9]

μ g :

Gas viscosity (g cm−1 s−1)

ρ :

Melt density (g cm−3)

ρ g :

Gas density (g cm−3)

References

  1. A. Chatterjee, C. Marique and P. Nilles: Ironmaking Steelmaking, 1984, vol. 11 (3), pp. 117-131.

    Google Scholar 

  2. M. Lv, R. Zhu, X. Wei, H. Wang and X. Bi: Steel Res. Int., 2012, vol. 83 (1), pp. 11-15.

    Article  Google Scholar 

  3. A. McLean, R.A. Heard, G.F. Garrido, and R.G.H. Lee: Proc. 3rd Int. Conf. Clean Steel, Inst. Metals, London, 1986, pp. 226–30.

  4. C.T. Jensen, M.F. Erspamer, J.F. Oliver, T.A. Bruce, R.A. Heard, and A. McLean: Electr. Furn. Conf. Proc., ISS, 1987, vol. 45, pp. 57–63.

  5. H. Wang: Ph.D. Dissertation, Royal Institute of Technology, Stockholm, Sweden, 2010.

  6. H. Wang, N.N. Viswanathan, N.B. Ballal and S. Seetharaman: High Temp. Mater. Processes, 2009, vol. 28 (6), pp. 407-419.

    Article  Google Scholar 

  7. D.R. Sain and G.R. Belton: Metall. Trans. B, 1976, vol. 7B, pp. 235-244.

    Article  Google Scholar 

  8. D.R. Sain and G.R. Belton: Metall. Trans. B, 1978, vol. 9B, pp. 403-407.

    Article  Google Scholar 

  9. F.J. Mannion and R.J. Fruehan: Metall. Trans. B, 1989, vol. 20B, pp. 853-861.

    Article  Google Scholar 

  10. C.P. Petit and R.J. Fruehan: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 639-645.

    Article  Google Scholar 

  11. K. Ito, K. Amano and H. Sakao: Trans. Iron Steel Inst. Jpn., 1984, vol. 24 (7), pp. 515-521.

    Article  Google Scholar 

  12. N.J. Simento, H.G. Lee and P.C. Hayes: Steel Res., 1998, vol. 69 (8), pp. 318-324.

    Google Scholar 

  13. N.J. Simento, P.C. Hayes and H.G. Lee: ISIJ Int., 1999, vol. 39 (12), pp. 1217-1223.

    Article  Google Scholar 

  14. R.J. Fruehan and L.J. Martonik: Metall. Trans. B, 1974, vol. 5B, pp. 1027-1032.

    Article  Google Scholar 

  15. L.A. Baker, N.A. Warner and A.E. Jenkins: Trans. Metall. Soc. AIME, 1964, vol. 230, pp. 1228-1235.

    Google Scholar 

  16. N.H. El-Kaddah and D.G.C. Robertson: Metall. Trans. B, 1978, vol. 9B, pp. 191-199.

    Article  Google Scholar 

  17. H. Sun and R.D. Pehlke: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 335-344.

    Article  Google Scholar 

  18. P.A. Distin, G. D. Hallett, and F. D. Richardson: J. Iron Steel Inst., 1968, vol. 206, pp. 821-33.

    Google Scholar 

  19. D. Widlund, D.S. Sarma, and P.G. Jönsson: ISIJ Int., 2006, vol. 46 (8), pp. 1149-1157.

    Article  Google Scholar 

  20. L.A. Baker, N.A. Warner and A.E. Jenkins: Trans. Metall. Soc. AIME, 1967, vol. 239, pp. 857-864.

    Google Scholar 

  21. L.A. Baker and R.G. Ward: J. Iron Steel Inst., 1967, vol. 205, pp.714-717.

    Google Scholar 

  22. N. Frossling: Beitraege zur Geophysik, 1938, vol. 52, pp. 170-216.

    Google Scholar 

  23. W.E. Ranz and W.R. Marshall: Chem. Eng. Prog., 1952, vol. 48, pp. 141-146.

    Google Scholar 

  24. R.L. Steinberger and R.E. Treybal: AIChE J., 1960, vol. 6 (2), pp. 227-232.

    Article  Google Scholar 

  25. H.G. Lee and Y.K. Rao: Metall. Trans. B, 1982, vol. 13B, pp. 403-409.

    Article  Google Scholar 

  26. W.G. Mathers, A.J. Madden Jr. and E.L. Piret: Ind. Eng. Chem., 1957, vol. 49 (6), pp. 961-968.

    Article  Google Scholar 

  27. H.G. Lee and Y.K. Rao: Metall. Trans. B, 1982, vol. 13B, pp. 411-421.

    Article  Google Scholar 

  28. N.J. Simento, P.C. Hayes and H.G. Lee: ISIJ Int., 1998, vol. 38 (7), pp. 690-696.

    Article  Google Scholar 

  29. W.R. Paterson and A.N. Hayhurst: Chem. Eng. Sci., 2000, vol. 55, pp.1925-1927.

    Article  Google Scholar 

  30. A.E. Hamielec, W.K. Lu and A. McLean: Can. Metall. Q., 1968, vol. 7 (1), pp. 27-33.

    Article  Google Scholar 

  31. L.A. Greenberg and A. McLean: Trans. Iron Steel Inst. Jpn., 1974, vol. 14 (6), pp. 395-403.

    Google Scholar 

Download references

Acknowledgments

Appreciation is expressed to the Natural Sciences and Engineering Research Council of Canada who provided funding in support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Wu.

Additional information

Manuscript submitted December 19, 2013.

Appendix

Appendix

Assuming an ideal gas phase, the density is calculated from the relationship:

$$ \rho_{\text{g}} = \frac{MP}{RT}. $$

Data for viscosity, inter-diffusivity, heat capacity, and thermal conductivity are available from AspenONE Engineering Suite—Heat Exchanger Design.

$$ T_{\text{f}} = 1079\,{\text{K}}\left( {806\,^\circ {\text{C}}} \right);\quad D_{\text{AB}} = 1.520\,{\text{cm}}^{2} \,{\text{s}}^{ - 1} . $$

CO2 Mole Fraction

ρ g, Density at T f

μ g, Viscosity at T f

C p, Heat Capacity at T f

k, Thermal Conductivity of Gas at T f

2

0.000452

0.000558

0.532

0.000460

6

0.000454

0.000561

0.560

0.000464

10

0.000456

0.000552

0.600

0.000461

15

0.000458

0.000560

0.636

0.000462

20

0.000460

0.000537

0.679

0.000464

25

0.000463

0.000529

0.717

0.000470

30

0.000465

0.000522

0.755

0.000482

$$ T_{\text{E}} = 896\,{\text{K}}\left( {623^\circ {\text{C}}} \right);\quad D_{\text{AB}} = 1.247\,{\text{cm}}^{2} \,{\text{s}}^{ - 1} . $$

CO2 Mole Fraction

ρ g, Density at T E

μ g, Viscosity at T E

C p, Heat Capacity at T E

k, Thermal Conductivity of Gas at T E

10

0.000456

0.000552

0.594

0.000393

30

0.000465

0.000522

0.738

0.000411

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, P., Yang, Y., Barati, M. et al. Decarburization of Levitated Fe-Cr-C Droplets by Carbon Dioxide. Metall Mater Trans B 45, 2211–2221 (2014). https://doi.org/10.1007/s11663-014-0126-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0126-8

Keywords

Navigation