Skip to main content
Log in

Determination of the Optimum Conditions for Leaching of Zinc Cathode Melting Furnace Slag in Ammonium Chloride Media

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This research is part of a continuing effort to leach zinc from zinc cathode melting furnace slags (ZCMFSs) to produce zinc oxide. The slag with an assay of 68.05 pct Zn was used in ammonium chloride leaching for zinc extraction. In this paper, the effects of influential factors on extraction efficiency of Zn from a ZCMFS were investigated. The Taguchi’s method based on orthogonal array (OA) design has been used to arrange the experimental runs in order to maximize zinc extraction from a slag. The softwares named Excel and Design-Expert 7 have been used to design experiments and subsequent analysis. OA L 25 (55) consisting of five parameters, each with five levels, was employed to evaluate the effects of reaction time (t = 10, 30, 50, 70, 90 minutes), reaction temperature [T = 313, 323, 333, 343, 353 (40, 50, 60, 70, 80) K (°C)], pulp density (S/L = 20, 40, 60, 80, 100 g/L), stirring speed (R = 300, 400, 500, 600, 700 rpm), and ammonium chloride concentration (C = 10, 15, 20, 25, 30 pctwt), on zinc extraction percent. Statistical analysis, ANOVA, was also employed to determine the relationship between experimental conditions and yield levels. The results showed that the significant parameters affecting leaching of slag were ammonium chloride concentration and pulp density, and increasing pulp density reduced leaching efficiency of zinc. However, increasing ammonium chloride concentration promoted the extraction of zinc. The optimum conditions for this study were found to be t 4: 70 minutes, T 5: 353 K (80 °C), (S/L)2: 40 g/L, R 3: 500 rpm, and C 4: 25 pctwt. Under these conditions, the dissolution percentage of Zn in ammonium chloride media was 94.61 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R.E. Kirk, and D.F. Othmer: Encyclopedia of Chemical Technology, Vol. 6, 4th ed., Wiley-VCH, New York, NY, 1997.

    Google Scholar 

  2. M.K. Jha, V. Kumar, and R.J. Singh: Resour. Conserv. Recy., 2001, vol. 33, pp. 1-22.

    Article  Google Scholar 

  3. R. Winand: Hydrometallurgy, 1991, vol. 27, pp. 285-316.

    Article  Google Scholar 

  4. J.L. Limpo, J.M. Figueiredo, S. Amer, and A. Luis: Hydrometallurgy, 1992, vol. 28, pp. 149–61.

    Article  Google Scholar 

  5. S. Amer, J.M. Figueiredo, and A. Luis: Hydrometallurgy, 1995, vol. 37, pp. 323-337.

    Article  Google Scholar 

  6. F. Elgersma, G.J. Witkamp, and G. M. Van Rosmalen: Hydrometallurgy, 1993, vol. 34, pp. 23-47.

    Article  Google Scholar 

  7. S. Sylvain, T.T. Chen, and J.E. Dutrizac: JOM-J MIN MET MAT S, 2001, vol. 51, pp. 32-35.

    Google Scholar 

  8. L.N. Singh, and B.R.L. Row: Hydrometallurgy, 1981, vol. 6, pp. 261-267.

    Article  Google Scholar 

  9. K.D. Sharma, and B.R.L. Row: Hydrometallurgy, 1985, vol.13, pp. 377–83.

    Article  Google Scholar 

  10. M.A. Rabah, and A.S. El-Sayed: Hydrometallurgy, 1995, vol. 37, pp. 23–32.

    Article  Google Scholar 

  11. R.K. Roy: A Primer on the Taguchi Method, Van Nostrand Reinhold, New York, 1990.

    Google Scholar 

  12. J. Moghaddam, R.S. Mamoory, Y. Yamini, and M. Abdollahy: Ind. Eng. Chem. Res., 2005, vol. 44, pp. 8952-8958.

    Article  Google Scholar 

  13. J. Moghaddam, R.S. Mamoory, M. Abdollahy, and Y. Yamini: Sep. Purif. Technol., 2006, vol. 51, pp. 157–64.

    Article  Google Scholar 

  14. J. Moghaddam, S. Kolahgar-Azari, and S. Karimi: Ind. Eng. Chem. Res., 2012, vol. 51, pp. 3224-3228.

    Article  Google Scholar 

  15. B. Behnajady, J. Moghaddam, M.A. Behnajady, and F. Rashchi: Ind. Eng. Chem. Res. 2012, vol. 51, pp. 3887-3894.

    Article  Google Scholar 

  16. M. Çopur, C. Özmetin, E. Özmetin, and M.M. Kocakerim: Chem. Eng. Process, 2004, vol. 43, pp. 1007-1014.

    Article  Google Scholar 

  17. S. Ju, M. Tang, S. Yang, and Y. Li: Hydrometallurgy, 2005, vol. 80, pp. 67-74.

    Article  Google Scholar 

  18. J.L. Limpo, and A. Luis: Hydrometallurgy, 1993, vol. 32, pp. 247–60.

    Article  Google Scholar 

  19. S.A. Mitra, G.M. Acosta, J. Khan, and R.L. Smith Jr: J. Environ. Sci. Heal. A, 1997, vol. 32, pp. 497-515.

    Article  Google Scholar 

  20. J.L. Limpo, A. Luis, and M.C. Cristina: Hydrometallurgy, 1995, vol. 38, pp. 235–43.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of Zanjan Zinc Khales sazan Industries Company for making available the samples used in this investigation and the analytical data included in Table III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Moghaddam.

Additional information

Manuscript submitted January 20, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behnajady, B., Babaeidehkordi, A. & Moghaddam, J. Determination of the Optimum Conditions for Leaching of Zinc Cathode Melting Furnace Slag in Ammonium Chloride Media. Metall Mater Trans B 45, 562–567 (2014). https://doi.org/10.1007/s11663-013-9971-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9971-0

Keywords

Navigation