Skip to main content

Advertisement

Log in

Optimization of a Steel Plant with Multiple Blast Furnaces Under Biomass Injection

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The allocation of resources between several blast furnaces in an integrated steelmaking plant is studied with the aim of finding the lowest specific operation cost for steel production. In order to reduce the use of fossil fuels, biomass was considered as an auxiliary reductant in the furnace after partial pyrolysis in an external unit, as a complement to heavy fuel oil. The optimization considers raw material, energy, and emission costs and a possible credit for sold power and heat. To decrease computational requirements and to guarantee that the global optimum is found, a piecewise linearized model of the blast furnace was used in combination with linear models of the sinter-, coke-, and power plants, hot stoves, and basic oxygen furnace. The optimization was carried out under different constraints on the availability of some raw materials as well as for different efficiencies of the hot stoves of the blast furnaces. The results indicate that a non-uniform distribution of the production between the furnaces can be advantageous, and some surprising findings concerning the optimal resource allocation under constrained operation are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. A1
Fig. A2

Similar content being viewed by others

Abbreviations

c :

cost factor (€/t, €/km3n, or €/MWh)

f :

function value after linearization

F :

specific cost of liquid steel (€/tls)

H :

effective heating value (MJ/kg)

K :

coefficient in linear BF model

m :

specific mass flow (kg/t)

\({\dot{m}}\) :

mass flow rate (t/h)

M :

large integer in MILP formulation (“big M”)

p :

slope in x direction

P :

electric power (MW)

q :

slope in z direction

\({\dot{Q}}\) :

heat flow (MW)

T :

temperature (K)

x :

variable in product

X :

input variable in BF model

\( y,{\tilde{y}}\) :

Binary variables in MILP formulation

Y :

output variable in BF model

z :

variable in product

Z :

mass ratio

∆:

difference

η :

pyrolysis yield

Ψ:

share of fossil carbon in carbon input

bio:

biomass

coal:

coal

coke:

coke

dh:

district heat

el:

electricity

hm:

hot metal

i :

general index

j :

general index

lime:

lime(stone)

ls:

liquid steel

O:

oxygen

oil:

(heavy) fuel oils

pel:

pellets

pyro:

pyrolysis

scrap:

steel scrap

References

  1. Y. Kim and E. Worrell: Energy Policy, 2002, vol. 30, 827-38.

    Article  Google Scholar 

  2. R.J. Fruehan: Ironmaking Steelmaking, 2005, vol. 32, pp. 3–8.

  3. A. Ghosh and A. Chatterjee: Ironmaking and Steelmaking: Theory and Practice, Prentice-Hall, New Delhi, 2008.

  4. M.A. Tseitlin, S.E. Lazutkin and G.M. Styopin: ISIJ Int., 1994, vol. 34, 570-73.

    Article  CAS  Google Scholar 

  5. P.R. Austin, H. Nogami and J. Yagi: ISIJ Int., 1998, vol. 38, 239-45.

    Article  CAS  Google Scholar 

  6. A. Hirsch, J. van der Stel, and D. Sert: Stahl Eisen, 2012, vol. 132 (4), p. 31.

  7. H. Helle, M. Helle, H. Saxén and F. Pettersson: ISIJ Int., 2010, vol. 50, 931-38.

    Article  CAS  Google Scholar 

  8. B.M. Hodge, F. Pettersson and N. Chakraborti: Steel Res., 2006, vol. 77, 459-61.

    CAS  Google Scholar 

  9. Y.S. Shen, B.Y. Guo, A.B. yu and P. Zulli: ISIJ Int., 2009, vol. 49, 819-26.

    Article  CAS  Google Scholar 

  10. Y.S. Shen, A.B. Yu, P.R. Austin and P. Zulli: Powder Technology, 2012, vol. 223, 27-38.

    Article  CAS  Google Scholar 

  11. J.A. de Castro, V.S. Guilherme, A.B. França, Y. Sazaki, and J.-I. Yagi: in Proceedings of the 6th International Congress on the Science and Technology of Ironmaking (ICSTI), Rio de Janeiro, Brazil, October 2012, pp. 338–47.

  12. M.F. Henriques Jr., F. Dantas and R. Schaeffer: Energy Policy, 2010, vol. 38, 1946-61.

    Article  Google Scholar 

  13. A. Babich, D. Senk and M. Fernandez: ISIJ Int., 2010, vol. 50, 81-88.

    Article  CAS  Google Scholar 

  14. M. Takekawa, K. Wakimoto, M. Matsu-ura, M. Hasegawa, M. Iwase and A. McLean: Steel Res., 2003, vol. 74, 347-50.

    CAS  Google Scholar 

  15. W.-H. Chen, S.-W. Du, C.-H. Tsai and Z.-Y. Wang: Bioresour. Technol., 2012, vol. 111, 433-38.

    Article  CAS  Google Scholar 

  16. S. Ueda, R. Inoue and T. Ariyama: Tetsu-to-Hagane, 2008, vol. 94,468-74.

    Article  CAS  Google Scholar 

  17. H. Suopajärvi and T. Fabritius: ISIJ International, 2012, vol. 52,779-87.

    Google Scholar 

  18. H. Helle, M. Helle, F. Pettersson and H. Saxén: ISIJ Int., 2009, vol. 49, 1316-24.

    Article  CAS  Google Scholar 

  19. H. Helle, M. Helle, F. Pettersson, and H. Saxén: Ironmaking Steelmaking, 2010, vol. 37, 590–98.

  20. C.-M. Wiklund, F. Pettersson, and H. Saxén: ISIJ Int., 2012, vol. 52, 35–44.

  21. J. Ranta, Production of charcoal: Handbook (in Finnish), Helsinki University, Finland, 1994.

    Google Scholar 

  22. H.E. Francis and W.G. Lloyd: J. Coal Qual., 1983, vol. 2, 21-25.

    CAS  Google Scholar 

  23. H. Aoki, H. Nogami, H. Tsuge, T. Miura and T. Furukawa: ISIJ Int., 1993, vol. 33, 646-54.

    Article  CAS  Google Scholar 

  24. J.G. Mathieson, H. Rogers, M.A. Somerville and S. Jahanshahi: ISIJ Int., 2012, vol. 52, 1489-96.

    Article  CAS  Google Scholar 

  25. A. Rist and N. Meysson: J. Met., 1967, vol. 19, 50-59.

    CAS  Google Scholar 

  26. H. Helle, M. Helle and H. Saxén: Chem. Eng. Sci., 2011, vol. 66, 6470-81.

    Article  CAS  Google Scholar 

  27. IBM ILOG CPLEX V12.1 User’s Manual for CPLEX, 2009.

Download references

Acknowledgments

Financial support from the Association of Finnish Steel and Metal Producers and the Academy of Finland is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl-Mikael Wiklund.

Additional information

Manuscript submitted August 15, 2012.

Appendix

Appendix

The terms in the BF model (Eq. [1]) describing the effect of oxygen and energy in biomass[8] are non-linear with respect to the unknowns in optimizing F in Eq. [2], since η, Z O,bio, and H bio depend non-linearly on the unknown pyrolysis temperature (cf. Figure 2). This problem can be tackled by developing piecewise linearizations of the variables with a suitable discretization, as indicated schematically for the yield (η) in Figure A1. Next, the product terms in X 7 and X 8 must be linearized to allow for a MILP formulation. For the product of two variables, x and z, a discretization is first applied yielding a block structure (cf. Figure A2). For fixed discretization steps (Δx and Δz), the product at the center of a block is given by

$$ f_{ij} = \left( {x_{i} + \frac{\Updelta x}{2}} \right)\left( {z_{j} + \frac{\Updelta z}{2}} \right) $$
(A1)

where the lower index i is used to denote discretization points along the x variable and j similarly for the z variable. The slope in the x direction may be approximated as

$$ p_{ij} = \frac{{x_{i + 1} \left( {z_{j} + \frac{\Updelta z}{2}} \right) - x_{i} \left( {z_{j} + \frac{\Updelta z}{2}} \right)}}{\Updelta x} $$
(A2)

which after simplification, gives

$$ p_{ij} = z_{j} + \frac{\Updelta z}{2} $$
(A3)

By analogy, the slope in the z direction is

$$ q_{ij} = x_{i} + \frac{\Updelta x}{2} $$
(A4)

The intercept of the linearized model now is given by

$$ k_{ij} = \left( {x_{i} + \frac{\Updelta x}{2}} \right)\left( {z_{j} + \frac{\Updelta z}{2}} \right) - p_{ij} \left( {x_{i} + \frac{\Updelta x}{2}} \right) - q_{ij} \left( {z_{j} + \frac{\Updelta z}{2}} \right) $$
(A5)

which simplifies to

$$ k_{ij} = - \left( {x_{i} + \frac{\Updelta x}{2}} \right)\left( {z_{j} + \frac{\Updelta z}{2}} \right) $$
(A6)

Using these variables, the function of the product of x and z can now be expressed linearly as

$$ f = k + v_{x} + v_{z} $$
(A7)

In Eq. [A7], the variables k, v x , and v z are given by the conditions

$$ k \le k_{ij} + M(2 - y_{i} - \tilde{y}_{j} );\;k \ge k_{ij} - M(2 - y_{i} - \tilde{y}_{j} ) $$
(A8a,b)
$$ v_{x} \le p_{ij} x + M(1 - y_{i} );\;v_{x} \ge p_{ij} x - M(1 - y_{i} ) $$
(A9a,b)
$$ v_{z} \le q_{ij} z + M(1 - \tilde{y}_{j} );\;v_{z} \ge q_{ij} x - M(1 - \tilde{y}_{j} ) $$
(A10a,b)

where (“big”) M is a large number that serves to disconnect inactive values in detecting the block of interest for the product xz. The binary variables \( y_{i} ,\tilde{y}_{j} \in \left\{ {0,1} \right\} \), in turn, have to satisfy the conditions

$$ \sum\limits_{i} {y_{i} = 1;\;} \sum\limits_{j} {\tilde{y}_{j} = 1;\quad \forall i,j} $$
(A11a,b)

and are connected to the values of x and z by

$$ x \le x_{i + 1} + M\left( {1 - y_{i} } \right);\;x \ge x_{i} - M\left( {1 - y_{i} } \right)\quad \forall i $$
(A12a,b)
$$ z \le z_{j + 1} + M\left( {1 - \tilde{y}_{j} } \right);\;z \ge z_{j} - M\left( {1 - \tilde{y}_{j} } \right)\quad \forall j $$
(A13a,b)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiklund, CM., Pettersson, F. & Saxén, H. Optimization of a Steel Plant with Multiple Blast Furnaces Under Biomass Injection. Metall Mater Trans B 44, 447–458 (2013). https://doi.org/10.1007/s11663-012-9790-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-012-9790-8

Keywords

Navigation