Skip to main content
Log in

Damage Assessment of A356 Al Alloy Under Ratcheting–Creep Interaction

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The aim of this report was to examine the influence of asymmetric cyclic stress on the ratcheting behavior of A356 Al alloy with special emphasis on its postratcheting creep behavior. A series of A356 alloy specimens were deformed under asymmetrical cyclic loading with different combinations of mean stress and stress amplitude. These tests were carried out up to 2000 cycles. Followed by ratcheting, the specimens were subjected to impression creep tests under varied stresses and temperatures. It is revealed from the ratcheting tests that strain accumulation increases with increasing stress amplitude or mean stress. However, total accumulated ratcheting strain of the investigated alloy was significantly low compared to that reported for some other aluminum alloys. The results of creep tests indicated that predominantly dislocation climb–assisted creep occurred for the alloy. Postratcheted specimens exhibited higher creep rates compared to that of the as-received A356 alloy; this fact was attributed to the work softening of the specimens during the impression creep test. The extent of work softening was minimum in the specimen that accumulated the highest strain during ratcheting, leading to its lowest creep rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. INSTRON is a trademark of INSTRON Limited, High Wycombe, Buckinghamshire, United Kingdom

References

  1. ASM International: ASM International Handbook, vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM INTERNATIONAL, Materials Park, OH, 1990.

  2. S.R. Sharma, Z.Y. Ma, and R.S. Mishra: Scripta Mater., 2004, vol. 51, pp. 237–41.

    Article  Google Scholar 

  3. J.W. Li, J.P. Xie, W.Y. Wang, and S.Z. Wei: Mater. Sci. Forum, 2007, vols. 561–565, pp. 147–50.

    Article  Google Scholar 

  4. H.R. Ammar, A.M. Samuel, and F.H. Samuel: Mater. Sci. Eng. A, 2008, vol. 473, pp. 65–75.

    Article  Google Scholar 

  5. S.K. Mishra, K. Dutta, and K.K. Ray: Int. J. Damage Mech., 2016, vol. 25 (3), pp. 431–44.

    Article  Google Scholar 

  6. B.A. Esgandari, B. Nami, M. Shahmiri, and A. Abedi: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 2518–23.

    Article  Google Scholar 

  7. S.M. Miresmaeili and B. Nami: J. Mater., 2014, vol. 56, pp. 286–90.

    Article  Google Scholar 

  8. D. Barbera, H. Chen, and Y. Liu: Int. J. Press. Vessel. Pip., 2016, vols. 139–140, pp. 159–72.

    Article  Google Scholar 

  9. M. Yousefi, M. Dehnavi, and S.M. Miresmaeili: Metall. Mater. Eng., 2015, vol. 21 (2), pp. 115–25.

    Google Scholar 

  10. D.H. Sastry: Mater. Sci. Eng. A, 2005, vol. 409, pp. 67–75.

    Article  Google Scholar 

  11. F. Yang and J.C.M. Li: Mater. Sci. Eng. R, 2013, vol. 74, pp. 233–253.

    Article  Google Scholar 

  12. A.K.S. Bankoti, A.K. Mondal, H. Dieringa, B.C. Ray, and S. Kumar: Mater. Sci. Eng. A, 2016, vol. 673, pp. 332–45.

    Article  Google Scholar 

  13. T. Sivarupan, C.H. Caceres, and J.A. Taylor: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4071–80.

    Article  Google Scholar 

  14. M.I. Houria, Y. Nadot, R. Fathallah, M. Roy, and D.M. Maijer: Int. J. Fatigue, 2015, vol. 80, pp. 90–102.

    Article  Google Scholar 

  15. K. Dutta and K.K. Ray: Mater. Sci. Eng. A, 2012, vol. 540, pp. 30–37.

    Article  Google Scholar 

  16. R. Kreethi, P. Verma, and K. Dutta: Trans. Ind. Inst. Met., 2015, vol. 68 (2), pp. 229–37.

    Article  Google Scholar 

  17. G. Ahmadzadeh and A. Varvani-Farahani: J. Compos. Mater., 2016, vol. 50 (17), pp. 2389–97.

    Article  Google Scholar 

  18. G. Kang: Compos. Sci. Technol., 2006, vol. 66, pp. 1418–30.

    Article  Google Scholar 

  19. G. Kang, Y. Liu, Y. Dong, and Q. Gao: J. Mater. Sci. Technol., 2011, vol. 27 (5), pp. 453–59.

    Article  Google Scholar 

  20. B. Nami, H. Razavi, S. Mirdamadi, S.G. Shabestari, and S.M. Miresmaeili: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1973–82.

    Article  Google Scholar 

  21. H. Frost and M.F. Ashby: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, 1st ed., Oxford, New York, NY, 1982.

    Google Scholar 

  22. S. Gollapudi, K.V Rajulapati, I. Charit, C.C. Koch, R.O. Scattergood, and K.L. Murty: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5773–81.

    Article  Google Scholar 

  23. George E. Dieter: Mechanical Metallurgy, 2nd ed., McGraw-Hill Book Co., New York, NY, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Dutta.

Additional information

Manuscript submitted September 9, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S.K., Roy, H., Mondal, A.K. et al. Damage Assessment of A356 Al Alloy Under Ratcheting–Creep Interaction. Metall Mater Trans A 48, 2877–2885 (2017). https://doi.org/10.1007/s11661-017-4077-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4077-y

Keywords

Navigation