Skip to main content
Log in

Sensitivity analysis for effects of heat treatment, stress, and temperature on AlSi12CuNiMg aluminum alloy behavior under force-controlled creep loading

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present article, influences of the heat treatment, the stress and the temperature were analyzed on the AlSi12CuNiMg aluminum alloy behavior under force-controlled creep loading. For this objective, high-temperature creep experiments were done at different stress levels and various temperatures on both as-cast and heat-treated samples. Then, the sensitivity analysis was performed by the MINITAB software on experimental data. Obtained results implied that the minimum strain rate and the fracture strain were affected by the heat treatment and the stress. However, for the creep lifetime, no significant influence of parameters was seen. The fracture surface investigation by the field-emission scanning electron microscopy indicated that both materials, with and without heat treatments had the similar brittle fracture behavior, due to quasi-cleavage marks. The heat treatment changed the fracture path in the aluminum alloy, from the intermetallic phase to Si particles. Moreover, in heat-treated samples, the creep lifetime increased at least 63%. In addition, the minimum strain rate decreased at least 44%, by the heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Azadi, H. Aroo, Creep properties and failure mechanisms of aluminum alloy and aluminum matrix silicon oxide nano-composite under working conditions in engine pistons. Mater. Res. Express 6, 115020 (2019)

    Article  ADS  Google Scholar 

  2. M. Azadi, H. Aroo (2019) Effect of adding 2 wt.% SiO2 nano-particles on creep behavior at 250 C and 100 MPa in AlSi12CuNiMg piston aluminum alloy, 7th International Biennial Conference on Ultrafine Grained and Nanostructured Materials, University of Trento and University of Tehran, Trento, Italy, September

  3. H. Aroo, M. Azadi, Modeling of creep behavior in AlSiCuNiMg alloy at different temperatures and stress levels. J. Solid Fluid Mech. 9(2), 61–76 (2019). ((in Persian))

    Google Scholar 

  4. B. Bose, R.J. Klassen, Effect of copper addition and heat treatment on the depth dependence of the nanoindentation creep of aluminum at 300 K. Mater. Sci. Eng., A 500, 164–169 (2009)

    Article  Google Scholar 

  5. W.W. Wang, B.B. Jia, S.J. Luo, Effect of heat treatment on mechanical properties of thixoformed 7A09 aluminum alloy. Trans. Nonferrous Metals Soc. China 19, 337–342 (2009)

    Article  Google Scholar 

  6. R. Arabi Jeshvaghani, H. Zohdi, H.R. Shahverdi, M. Bozorg, S.M.M. Hadavi, Influence of multi-step heat treatments in creep age forming of 7075 aluminum alloy: optimization for springback, strength and exfoliation corrosion. Mater. Charact. 73, 8–15 (2012)

    Article  Google Scholar 

  7. M. Azadi, M. Mokhtari Shirazabad, Heat treatment effect on thermo-mechanical fatigue and low cycle fatigue behaviors of A356.0 aluminum alloy. Mater. Design 45, 279–285 (2013)

    Article  Google Scholar 

  8. M. Faccoli, D. Dioni, S. Cecckei, G. Cornacchia, A. Panvini, Optimization of heat treatment of gravity cast Sr-modified B356 aluminum alloy. Trans. Nonferrous Metals Soc. China 27, 1698–1706 (2017)

    Article  Google Scholar 

  9. R. Fernandez-Gutierrez, G.C. Requena, The effect of spheroidisation heat treatment on the creep resistance of a cast AlSi12CuMgNi piston alloy. Mater. Sci. Eng., A 598, 147–153 (2014)

    Article  Google Scholar 

  10. S. Menargues, E. Martin, M.T. Baile, J.A. Picas, New short T6 heat treatments for aluminum silicon alloys obtained by semisolid forming. Mater. Sci. Eng. A 621, 236–242 (2015)

    Article  Google Scholar 

  11. B. Wang, X.H. Chen, F.S. Pan, J.J. Mao, Y. Fang, Effects of cold rolling and heat treatment on microstructure and mechanical properties of AA 5052 aluminum alloy. Trans. Nonferrous Metals Soc. China 25, 2481–2489 (2015)

    Article  Google Scholar 

  12. M. Azadi, Cyclic thermo-mechanical stress, strain and continuum damage behaviors in light alloys during fatigue lifetime considering heat treatment effect. Int. J. Fatigue 99, 303–314 (2017)

    Article  Google Scholar 

  13. R. Gecu, S. Acar, A. Kisasoz, K.A. Guler, A. Karaaslan, Influence of T6 heat treatment on A356 and A380 aluminium alloys manufactured by thixoforging combined with low superheat casting. Trans. Nonferrous Metals Soc. China 28, 385–392 (2018)

    Article  Google Scholar 

  14. Y. Li, Z. Shi, J. Lin, Y.L. Yang, Q. Rong, Extended application of a unified creep-ageing constitutive model to multistep heat treatment of aluminum alloys. Mater. Des. 122, 422–432 (2017)

    Article  Google Scholar 

  15. Y. Duan, J. Xu, J. Chen, C. Yu, J. Chen, H. Lu, The effects of heat treatment on the microstructure and cyclic behavior of A7N01-T4 aluminum alloy. Mater. Charact. 131, 201–209 (2017)

    Article  Google Scholar 

  16. K.T. Akhil, J. Varghese, V. Ka, K. Shunmugesh, S. Arul, R. Sellamuthu, Influence of heat treatment and aging process on LM13 aluminum alloy cast sections: an experimental study. Mater. Today Proc. 4, 7194–7201 (2017)

    Article  Google Scholar 

  17. E.S. Rao, N. Ramanaiah, Influence of heat treatment on mechanical and corrosion properties of aluminum Metal Matrix composites (AA 6061 reinforced with MoS2). Mater. Today Proc. 4, 11270–11278 (2017)

    Article  Google Scholar 

  18. J. Herman, M. Merklein, Improvement of deep drawability of ultra-fine grained 6000 series aluminum alloy by tailored heat treatment. Procedia Manuf. 15, 976–983 (2018)

    Article  Google Scholar 

  19. L.F. Wang, J. Sun, X.L. Yu, Y. Shi, X.G. Zhu, L.Y. Cheng, H.H. Liang, B. Yan, L.J. Guo, Enhancement in mechanical properties of selectively laser-melted AlSi10Mg aluminum alloys by T6-like heat treatment. Mater. Sci. Eng. A 734, 299–310 (2018)

    Article  Google Scholar 

  20. R. Canyook, R. Utakrut, C. Wongnichakorn, K. Fakpan, S. Kongiang, The effects of heat treatment on microstructure and mechanical properties of rheocasting ADC12 aluminum alloy. Mater. Today Proc. 5, 9476–9482 (2018)

    Article  Google Scholar 

  21. W. Jaisuea, R. Canyook, P. Promdirek, Influence of T6 heat treatment on mechanical properties and microstructure of aluminum SFC204 used in orbiting scroll. Mater. Today Proc. 5, 9595–9602 (2018)

    Article  Google Scholar 

  22. R. Martinez, I. Guillot, D. Massinon, New heat treatment to improve the mechanical properties of low copper aluminum primary foundry alloy. Mater. Sci. Eng. A 755, 158–165 (2019)

    Article  Google Scholar 

  23. M. Azadi, S. Rezanezhad, M. Zolfaghari, M. Azadi, Effects of various ageing heat treatments on microstructural features and hardness of piston aluminum alloy. Int. J. Eng. Trans. A 32(1), 92–98 (2019)

    Google Scholar 

  24. S. Rezanezhad, M. Azadi, M. Azadi, Influence of heat treatment on high‑cycle fatigue and fracture behaviors of piston aluminum alloy under fully‑reversed cyclic bending, accepted in Metals and Materials International, 2019

  25. ASM Handbook, Volume 9, Metallography and microstructures, ASM International (1985)

  26. N. Alpay, N.P. Benehkohal, M.P. Cote, G.P. Demopoulos, M. Brochu, Anodized aluminum–silicon alloy counter electrode substrates for next generation solar cell applications. Appl. Surf. Sci. 356, 317–324 (2015)

    Article  ADS  Google Scholar 

  27. M. Zolfaghari, Investigation of nano-particles addition effect on bending high-cycle fatigue lifetime in engine piston aluminum alloy, MSc Thesis, Semnan University, Iran, 2018

  28. S. Rezanezhad, Investigation of heat treatment effect on bending high-cycle fatigue properties in aluminum-silicon alloy, with and without nano-particles, MSc Thesis, Semnan University, Iran, 2018

  29. Standard test methods for conducting creep, creep-rupture and stress-rupture tests of metallic materials, ASTM-E13911, ASTM International, 2012

  30. M. Azadi, M. Azadi, Evaluation of high-temperature creep behavior in Inconel-713C nickel-based superalloy considering effects of stress levels. Mater. Sci. Eng. A 689, 298–305 (2017)

    Article  Google Scholar 

  31. H. Bahmanabadi, S. Rezanezhad, M. Azadi, M. Azadi, Characterization of creep damage and lifetime in Inconel-713C nickel-based superalloy by stress-based, strain/strain rate-based and continuum damage mechanics models. Mater. Res. Express 5, 026509 (2018)

    Article  ADS  Google Scholar 

  32. M. Azadi, M. Farzannasab, Evaluation of high-cycle fatigue behavior compact bones at different loading frequencies. Meccanica 53(14), 3517–3526 (2018)

    Article  Google Scholar 

  33. D.C. Montgoery, Design and Analysis of Experiments (Wiley, New York, 2012).

    Google Scholar 

  34. H. Aroo, M. Azadi, Sensitivity analysis of creep properties to effects of temperature and reinforcement parameters in aluminum alloy and aluminum base nano-composite, Iranian Society of Mechanical Engineers Conference, Iran, 2019 (in Persian)

  35. M. Zhu, Z. Jian, G. Yang, Y. Zhou, Effects of T6 heat treatment on the microstructure, tensile properties, and fracture behavior of the modified A356 alloy. Mater. Design 36, 243–249 (2012)

    Article  Google Scholar 

  36. L.Y. Pio, Effect of T6 heat treatment on the mechanical properties of gravity die cast A356 aluminum alloy. J. Appl. Sci. 11(11), 2048–2052 (2011)

    Article  ADS  Google Scholar 

  37. C.C. Smith, A.M. Taylor, P. Greenfield, The influence of heat-treatment on the creep strength of the magnesium-zirconium alloy ZA. J. Nucl. Mater. 12(2), 198–207 (1964)

    Article  ADS  Google Scholar 

  38. H. Yang, D. Zander, B. Jiang, Y. Huang, S. Gavras, K.U. Kainer, H. Dieringa, Effects of heat treatment on the microstructural evolution and creep resistance of Elektron21 alloy and its nanocomposite. Mater. Sci. Eng. A 789, 139669 (2020)

    Article  Google Scholar 

  39. K. Ishikawa, Y. Kobayashi, Creep and rupture behavior of a commercial aluminum-magnesium alloy A5083 at constant applied stress. Mater. Sci. Eng. A 387–389, 613–617 (2004)

    Article  Google Scholar 

  40. E. Kandarea, S. Feiha, A. Kootsookosa, Z. Mathysc, B.Y. Lattimerd, A.P. Mouritza, Creep-based life prediction modelling of aluminum in fire. Mater. Sci. Eng. A 527, 1185–1193 (2010)

    Article  Google Scholar 

  41. J. Lin, Z.L. Kowalewski, J. Cao, Creep rupture of copper and aluminium alloy under combined loadings-experiments and their various descriptions. Int. J. Mech. Sci. 47, 1038–1058 (2005)

    Article  Google Scholar 

  42. J.S. Robinson, R.L. Cudd, J.T. Evans, Creep resistant aluminum alloys and their applications. Mater. Sci. Technol. (2003) 143–155

  43. S.A. Jenabali Jahromi, Creep behavior of spray-cast 7XXX aluminum alloy. Mater. Design 23(2):169–172

  44. R.N. Lumley, A.J. Morton, I.J. Polmear, Enhanced creep performance in an Al-Cu-Mg-Ag alloy through under ageing. Acta Mater. 50, 3597–3608 (2002)

    Article  ADS  Google Scholar 

  45. P.A. Rometsch, Y. Zhang, S. Knight, Heat treatment of 7XXX series aluminum alloys-some recent developments. Trans. Nonferrous Metals Soc. China 24, 2003–2017 (2014)

    Article  Google Scholar 

  46. A.D. Isadarea, B. Aremob, M.O. Adeoyec, O.J. Olawalec, M.D. Shittuc, Effect of heat treatment on some mechanical properties of 7075 aluminum alloy. Mater. Res. 16(1), 190–194 (2013)

    Article  Google Scholar 

  47. N. Toric, J. Brnic, I. Boko, M. Brcic, I.W. Burgess, I. Uzelac, Experimental analysis of the behavior of aluminum alloy EN 6082AW T6 at high temperature. Metals 7(4), 126 (2017)

    Article  Google Scholar 

  48. H. Oikawa, J. Kariya, S. Karashima, Some activation parameters in steady-state creep of aluminum-magnesium alloys at high temperatures. Metal Sci 8(1), 106–111 (2016)

    Article  Google Scholar 

  49. M. Azadi, H. Aroo, The temperature effect on creep and fracture behaviors of aluminum matrix nano-SiO2-composite, comparing to AlSi12Cu3Ni2MgFe aluminum alloy. Int. J. Eng. Trans. B Appl. 33(8), 1579–1589 (2020)

    Google Scholar 

  50. M. Wang, J.C. Pang, S.X. Li, Z.F. Zhang, Low-cycle fatigue properties and life prediction of Al-Si piston alloy at elevated temperature. Mater. Sci. Eng. A 704, 480–492 (2017)

    Article  Google Scholar 

  51. M. Wang, J.C. Pang, M.X. Zhang, H.Q. Liu, S.X. Li, Z.F. Zhang, Thermo-mechanical fatigue behavior and life prediction of the Al-Si piston alloy. Mater. Sci. Eng. A 715, 62–72 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Motorsazi Pooya Neyestanak (MPN) Company, located in Isfahan, Iran for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Azadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golshan, A.M.A., Aroo, H. & Azadi, M. Sensitivity analysis for effects of heat treatment, stress, and temperature on AlSi12CuNiMg aluminum alloy behavior under force-controlled creep loading. Appl. Phys. A 127, 48 (2021). https://doi.org/10.1007/s00339-020-04134-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04134-9

Keywords

Navigation